

P.E.S. College of Engineering, Mandya

Department of Electronics & Communication Engineering

SYLLABUS

(With effect from 2022-23)

Bachelor Degree In **Electronics & Communication Engineering**

III & IV Semester

Out Come Based Education With Choice Based Credit System

[National Education Policy Scheme]

P.E.S. College of Engineering, Mandya - 571 401, Karnataka

[An Autonomous Institution affiliated to VTU, Belagavi, Grant – in – Aid Institution (Government of Karnataka), Accredited by NBA (All UG Programs), NAAC and Approved by AICTE, New Delhi]

Ph: 08232- 220043, Fax: 08232 - 222075, Web: www.pescemandya.org

VISION

"PESCE shall be a leading institution imparting quality Engineering and Management education developing creative and socially responsible professionals."

MISSION

- Provide state of the art infrastructure, motivate the faculty to be proficient in their field of specialization and adopt best teaching-learning practices.
- Impart engineering and managerial skills through competent and committed faculty using outcome based educational curriculum.
- Inculcate professional ethics, leadership qualities and entrepreneurial skills to meet the societal needs.
- > Promote research, product development and industry-institution interaction.

QUALITY POLICY

Highly committed in providing quality, concurrent technical education and continuously striving to meet expectations of stake holders.

CORE VALUES

Professionalism Empathy Synergy Commitment Ethics

Department of Electronics and Communication Engineering

The department of Electronics and Communication Engineering was incepted in 1967 with an undergraduate program in Electronics and Communication Engineering. Initially, the program had an intake of 60 students, which increased to 120 in 2012, and further increased to 180 in 2019. Almost 200 students graduate every year, and the long journey of 50 years has seen satisfactory contributions to society, the nation, and the world. The alumni of this department have a strong global presence, making their alma mater proud in every sector they represent.

The department started its PG program in 2012 in the specializations of VLSI design and embedded systems. Equipped with well qualified and dedicated faculty, the department has a focus on VLSI design, embedded systems, and image processing. The quality of teaching and training has yielded a high growth rate of placement at various organizations. The large number of candidates pursuing research programs (M.Sc. and Ph.D.) is a true testimonial to the research potential of the department. The department is recognized as a research centre by VTU, and Mysore University offers a part-time and full-time Ph.D. Program.

Vision

The department of E & C would endeavour to create a pool of Engineers who would be extremely competent technically, ethically strong also fulfil their obligation in terms of social responsibility.

Mission

- M1: Adopt the best pedagogical methods and provide the best facility, infrastructure and an ambience Conducive to imbibe technical knowledge and practicing ethics.
- M2: Group and individual exercises to inculcate habit of analytical and strategic thinking to help the Students to develop creative thinking and instil team skills
- M3: MoUs and Sponsored projects with industry and R & D organizations for collaborative learning
- M4: Enabling and encouraging students for continuing education and moulding them for lifelong Learning process

Program Educational Objectives (PEOs)

- **PEO1:** Graduates to exhibit knowledge in mathematics, engineering fundamentals applied to Electronics and Communication Engineering for professional achievement in industry, research and academia
- **PEO2:** Graduates to identify, analyse and apply engineering concepts for design of Electronics and Communication Engineering systems and demonstrate multidisciplinary expertise to handle societal needs and meet contemporary requirements
- **PEO3:** Graduates to perform with leadership qualities, team spirit, management skills, attitude and ethics need for successful career, sustained learning and entrepreneurship.

Program Outcomes (POs)

- **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSOs)

Electronics and Communication Engineering Graduates will be able to

- **PSO1:** An ability to understand the basic concepts in Electronics and Communication Engineering and to apply them in the design and implementation of Electronics and Communication Systems.
- **PSO2:** An ability to solve complex problems in Electronics and Communication Engineering, using latest hardware and software tools, along with analytical skills to arrive at appropriate solutions.

		Bachelor of Engineer	ing (III –Sen	neste	er)						
Sl.	Course Code	Course Title	Teaching	Hrs		/ Week Credits Examina			ation Marks		
No.	Course Coue	Course Thie	Department	L	Т	Р	Creatis	CIE	SEE	Total	
1	P22MA301	Engineering Mathematics – III	MA	2	2	-	3	50	50	100	
2	P22EC302	Linear Integrated Circuits	EC	3	-	-	3	50	50	100	
3	P22EC303	Circuit Theory	EC	3	-	-	3	50	50	100	
4	P22EC304	Digital Logic design	EC	3	-	2	4	50	50	100	
5	P22EC305	Signals and Systems	EC	3	-	2	4	50	50	100	
6	P22ECL306	Linear Integrated Circuits Laboratory	EC	-	-	2	1	50	50	100	
7	P22HSMC307	Employability Enhancement Skills - III	HSMC	-	2	-	1	50	50	100	
8	P22BFE308	Biology For Engineers	EC	2	-	-	2	50	50	100	
9	P22NSS308	National Service Scheme (NSS)	NSS coordinator								
	P22PED308	Physical Education (PE) (Sports and Athletics)	PED	-	-	2	0	100	-	100	
	P22YOG308	Yoga	YOGA								
		Total					21				
10	P22MDIP301	Additional Mathematics - I	MA	2	2	-	0	100	-	100	
11	P22HDIP307	Additional Employability Enhancement Skills - I	HSMC	-	2	-	0	100	-	100	

		Bachelor of Engineer	ing (IV –Sen	neste	r)					
Sl.		G	Teaching	Hrs	s / W	eek		Exami	nation	Marks
No.	Course Code	Course Title	Department	L	Т	Р	Credits	CIE	SEE	Total
1	P22MA401	Engineering Mathematics – IV	MA	2	2	-	3	50	50	100
2	P22EC402	Analog and Digital Communication	EC	3	-	-	3	50	50	100
3	P22EC403	Electromagnetic field theory	EC	3	-	-	3	50	50	100
4	P22EC404	Digital Design Using Verilog HDL	EC	3	-	2	4	50	50	100
5	P22EC405	Microcontroller	EC	3	-	2	4	50	50	100
6	P22ECL406	Analog and Digital Communication Laboratory	EC	-	-	2	1	50	50	100
7	P22HSMC407	Employability Enhancement Skills - IV	HSMC	-	2	-	1	50	50	100
8	P22INT408	Internship – I	EC	-	-	-	2	-	100	100
9	P22NSS409	National Service Scheme (NSS)	NSS coordinator							
	P22PED409	Physical Education (PE) (Sports and Athletics)	PED	-	-	2	0	100	-	100
	P22YOG409	Yoga	YOGA							
		Total					21			
10	P22MDIP401	Basic Engineering Mathematics - II	MA	2	2	-	0	100	-	100
11	P22HDIP408	Employability Enhancement Skills – II	HSMC	-	2	-	0	100	-	100

L –Lecture, T – Tutorial, P- Practical/ Drawing, CIE: Continuous Internal Evaluation, SEE: Semester End Examination

Course Title	TRANSFORMS AND SERIES											
Course Code	P22MA301											
Category		ALL STRE	AMS									
Scheme and		Theo	ory/Practic	al/Integrated		Total teaching	Credits					
Credits	L	Т	Р	SS	Total	hours	Cledits					
Ciouns	02	02	00	00	03	40	03					
CIE Marks: 50	SEE Mark	s: 50	Total Max.	marks=100	Duration of SEE: 03 Hours							

1	Understand the concept of infinite series; learn and apply Fourier series to physical phenomena in engineering analysis.	represent	periodica	
2	To facilitate students to study, analyse and apply various transforms to solve er	gineering	problems	
Unit	Syllobus content	No. of hours		
Unit	Syllabus content	Theory	Tutoria	
Ι	Infinite Series: Introduction, convergence, divergence and oscillation of a series, Tests for convergence – Comparison test, Ratio test, Cauchy's root test Raabe's test, (All tests without proof)- Problems.		02	
	Self-study component: Integral Test, Alternating series, Leibnitz's theorem – absolute and conditional convergence.			
Π	Fourier Series:			
	Introduction, periodic function, even and odd functions, Dirichlet's conditions, Euler's formula for Fourier series (no proof). Fourier series for functions of arbitrary period of the form 2L (all particular cases) – problems, analysis- Illustrative examples from engineering field. Half Range Fourier series- Construction of Half range cosine and sine series and problems. Practical harmonic analysis- Illustrative examples from engineering field.	06	02	
	Self study: Complex Fourier series.			
ш	Laplace Transforms: Definition – Transforms of elementary functions. Properties of Laplace Transforms- linearity, Change of scale, shifting, Transform of Derivative and Integrals, Transform of a function multiplied by t^n and division t (no proof)-Problems, Transforms of periodic function, unit step function (All results without proof)-Problems only. Inverse Laplace Transforms : Evaluation of inverse transforms by standard methods. Convolution theorem - Problems only.	06	02	
	Self-study component- Transform of Unit impulse function. Solution			
IV	of ODE by Laplace method and L-R-C circuits.			
IV	Fourier Transforms: Complex Fourier Transform: Infinite Fourier transforms and Inverse Fourier transforms. Properties of Fourier Transforms- linearity Change of scale, shifting and modulation (no proof)-Problems, Fourier sine and cosine transforms and Inverse Fourier cosine and sine transforms with properties- Problems Convolution theorem and Parseval's identity for Fourier Transform (no proof)-problems.	06	02	
	Self study : Fourier integrals- Complex forms of Fourier integral.			

V	Z-Transforms : Definition. Some standard Z-transforms. Properties-linearity, Damping, Shifting, multiplication by n , initial and final value theorem-		
	problems. Evaluation of Inverse Z- transforms- problems.	06	02
	Application to Difference Equations : Solutions of linear difference equations using Z- transforms.		-
	Self study: Convolution theorem and problems, two sided Z-transforms.		

COURS	COURSE OUTCOMES: On completion of the course, student should be able to:									
CO1:	Understand the fundamental concepts of infinite series, transforms of functions.									
CO2:	Apply series and transform techniques to obtain series expansion, discrete and									
	continuous transformation of various mathematical functions.									
CO3:	Analyze various signals using series expansions and differential,									
	integral and difference equations using transforms.									
CO4:	Evaluate indefinite integrals, differential equations and difference equations subject									
	to initial conditions using transforms and develop series for a discontinuous									
	function.									

TEACHING - LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos

TEXT BOOKS

- 1. B.S. Grewal, Higher Engineering Mathematics (44th Edition 2018), Khanna Publishers, New Delhi.
- 2. E. Kreysizig, Advanced Engineering Mathematics, John Wiley and sons, 10th Ed. (Reprint) 2016.

REFERENCE BOOKS

- 1. V. Ramana: Higher Engineering Mathematics, McGraw –Hill Education, 11th Ed.,
- 2. H. C. Taneja, Advanced Engineering Mathematics, Volume I & II, I.K. International Publishing House Pvt. Ltd., New Delhi.
- 3. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2010.

ONLINE RESOURCES

- 1. <u>http://www.nptel.ac.in</u>
- 2. https://en.wikipedia.org
- 3. https://ocw.mit.edu/courses/18-03sc-differential-equations-fall-2011/
- 4. https://ocw.mit.edu/courses/18-06sc-linear-algebra-fall-2011/
- 5. <u>https://math.hmc.edu/calculus/hmc-mathematics-calculus-online-tutorials/differential-equations/first-order-differential-equations/</u>

QUESTION PAPER PATTERN (SEE)								
PART-A	PART-B							
One question from each unit carrying two	Answer any TWO sub questions for maximum 18 marks							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2										
CO2	2	3										
CO3	3	2										
CO4	2	3										
Strengt	h of corr	elation:	Low-1, I	Medium-	2, High-	-3	1	I	1	1	1	I

		ear Integrated		
[As per	Choice Based C	redit System (CI SEMESTER –	BCS) & OBE Scheme]	
Course Code:		P22EC302	Credits:	03
Teaching Hours/Wee	ek (L:T:P):	3:0:0	CIE Marks:	50
Total Number of Tea		40	SEE Marks:	50
Course Learning Obj	-	rse will enable th	he students to:	I
• Understand the	various applica	ations of Op-Ar	its operation as DC and A np like inverting amplifi nd difference amplifier.	
Frequency compUnderstand the	pensation metho	ds.	current amplifiers, Circuit rentiating, integrating and	-
Op–Amps in sig	cations of 555 tir gnal generators, f	filters and DC vo		tors and use of
	-			0.11
		IT – I	amplifiers, Op–Amp para	8 Hours
mplifier. Text 1: 1.1, 2.3, 2.4, 2. Self-study	1. Study of	f instrumentatior	amplifier.	
component:	2. Study o Followe		edance Capacitor Coupled	d Voltage
	UN	IT – II		8 Hours
Compensation Methods OP-AMP Application	s, Circuit Stabilit s: Voltage Sourc rs, Inverting Schr	y Precautions. ces, Current Sour nitt Trigger Circ	Dp-Amp Circuit Stability, rces and Current Sinks, Cu uit, Differentiating Circuit	rrent Amplifier
10A0 100.1, 0.2, 0.0, 7.1		CT 1.4 .!		
		of Log and Anti-	log amplifiers	
Self-study	1. Study	U	log amplifiers. width and Slew rate.	
	 Study Study 	U	log amplifiers. width and Slew rate.	8 Hours

Self-study component:	 Study Mono stable Multivit Study of Dead Zone Circuit 		ıp.
	UNIT – IV		8 Hours
and Hartley Oscilla Second Order active DC Voltage Regul Output Regulators,	555 Timer Monostable, 555 Timer As tors, Active Filters –Filter types and ch e filters. ators: Voltage Regulator Basics, Op–A IC linear Voltage Regulators: 723 IC re 1.1, 11.2, 12.1, 12.2, 12.3, 13.1, 13.2, 1	haracteristics, First Amp Series Voltage egulator and LM 31	order active filter, Regulator, Adjustable 17 IC regulator.
Self-study component:	 Study of Band pass and Ba Study of LM337 IC regula 	-	
	8 Hours		
PLL: Basic PLL Sy Text1: 15.1, 15.2, 1 Self-study	hods: Dual-Slope Integrator ADC, Dig ystem, PLL Components, PLL Performa 5.3, 15.4 (Mentioned topics only), 16.1 1. Study of Linear Ramp ADC	ance Factors, Integ , 16.2, 16.3, 16.5	
component:	2. Study of applications of PL		
	comes with <i>Action verbs</i> for the	Bloom's Taxonomy Level	Program Outcome Addressed (PO #) with BTL
and voltage re	s of 741 Op- Amp, 555 Timer, PLL egulator	Understand	PO1(L2)
	e working of op-amp applications, ators, Data converters and PLL system	, Applying	PO1 (L3)
compensation	circuit stability and Frequency methods, applications of op- imer, volte regulator and PLL	Analyze	PO2 (L4)
	op-amp applications circuits and for a given specification	Creating	PO3 (L6)
-	Il Amplifiers and Linear IC's", David SBN-13: 978-0-19-569613-4 ISBN-10		on, Oxford university
Reference Book(s) 1. "Linear Int 2006, New A		and Shail B. Jain, 88: ISBN-13: 978-8	8122430981

P.E.S. College of Engineering, Mandya

Department of Electronics & Communication Engineering

Web and Video link(s):

- 1. Analog Electronic Circuit- <u>https://youtu.be/pkIxCmaxWFg</u>
- 2. Differential and Operational Amplifiers- https://youtu.be/LS8ne40mSTE

E-Books/Resources:

- 1. <u>https://www2.mvcc.edu/users/faculty/jfiore/OpAmps/OperationalAmplifiersAnd</u> <u>LinearICs_3E.pdf</u>
- 2. <u>https://books.google.co.in/books?id=aByz9D63wC&printsec=frontcover#v=onepage&q&f=false</u>
- 3. <u>https://drive.google.com/u/0/uc?id=1cK8mBJXxeFyNENRFYzSuqLCHWsqy</u> <u>Rzzp&export=download</u>

D. Course Articulation Matrix (CAM)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
#1	3												2	
#2	3												3	
#3		2												2
#4			2											

		Circuit Theory		
[As per (Thoice Based	U	CS) & OBE Scheme]	
	Shoree Dasea	SEMESTER – III		
Course Code:		P22EC303	Credits:	03
Teaching Hours/Week (L:T:P):	3:0:0	CIE Marks:	50
Total Number of Teachi		40	SEE Marks:	50
Course Learning Objecti	-	rse will enable the st	udents to:	
 solutions through n dc) to analyze com Analyze the transic differential equation Provide explanation 	ode analysis a plex circuits. ent conditions ns. n of Laplace to	and mesh analysis m that may occur in cansform and its app	nsformations and also t ethods, various network electrical networks by s lication in solving circui	theorems (ac and solving necessary t problems.
	-	•	Laplace transform metho	
	-		rn about few special two- ne solution method for	1
• Demonstrate that t with a large numbe			le solution method for	solving networks
•			for different one-port ne	etworks
		-	Tor unrefert one port it	-
T. 4 1 4" 4 . NT. 4 1		$\frac{\mathbf{NIT} - \mathbf{I}}{\mathbf{I} + \mathbf{I} + \mathbf{I}}$		8 Hours
Introduction to Network Thevenin's Theorem, Nort Text: 6.1, 6.2, 6.3, 6.4, 6.5	on's Theorem	•		
Self-study component:		sformation, Star Del	ta Transformation, Millr	nan's Theorem,
j i j	Substitution		,	,
	UN	NIT – II		8 Hours
Introduction to Resonand Introduction to Transien Circuit, Resistor-Inductor- Text: 5.1, 5.2, 5.3, 10.1, 10	t Analysis: In Capacitor Cir	itial Conditions, Res cuit.		esistor-Capacitor
Self-study component:			el Resonance Circuits, B	ehaviour of Pure
~ 1	Resistor in a		our of Pure Inductor in a	
	UN	IT – III		8 Hours
Introduction to Laplace 7 Functions, Waveform Sym Capacitor Circuit, Resistor Response of RC Circuit to Text: 11.1, 11.5, 11.6, 11	thesis, The Tra -Inductor- Cap Various Func	ansformed Circuit, R pacitor Circuit, Resp tions.	Resistor-Inductor Circuit, ponse of RL Circuit to Va	Resistor-
Self-study component:	Write progra	ms in MATLAB/PY	THON to synthesis the	waveforms
	TINI	IT – IV		Q Llours
Introduction to Network Incidence Matrix, Loop M Introduction to Two-Por Circuit Admittance Parameters).	Topology: Gratrix or Circui t Networks: Ceters (Y Paran	raph of a Network, E t Matrix, Cutset Mat Open-Circuit Impeda neters), Transmission	trix, ince Parameters (Z Paran	neters), Short-
Text: 9.1, 9.2, 9.3, 9.4, 9.5	, 9.6, 13.1, 13	.2, 13.3, 13.4, 13.6		

P22 Scheme - III & IV Semester Syllabus

C 18		D	
Self-s	tudy component: Duality, Inter-relationships between the UNIT – V	Parameters.	8 Hours
Introd	uction to Network Synthesis: Hurwitz Polynomials, Pos	itiva Daol Eu	
	esis Concepts, Realization of LC Functions, Realization of RC		netions, Elementary
-	16.1, 16.2, 16.3, 16.4, 16.5, 16.6, 16.7	r unetions.	
	study component: Passive Filters, Realization of RL Funct	ions	
	se Outcomes: On completion of this course, students are able		
COs	Course Outcomes with <i>Action verbs</i> for the Course topics	Bloom's Taxonomy Level	Program Outcome Addressed (PO #) with BTL
CO1	Apply the fundamental concepts of electrical networks to compute the value of the specified parameter.	Apply	PO1(L3)
CO2	Analyze the linear circuits in time and frequency domain and provide a concise summary of the results.	Analyze	PO2(L4)
CO3	Develop a network to synthesize the given mathematical function.	Develop	PO3 (L5)
CO4	Simulate the network using appropriate tools to verify and conclude the performance specification.	Conclude	PO5, PO9,PO10, (L6)
	Book(s): Network Analysis and Synthesis, Ravish R Singh, McGraw Hill Education (India) Private Limited. ISBN: 978-	1259062957	
Refere	ence Book(s):		
	Network analysis, 3E, M. E. Van Valkenburg and T.S. Rath Pearson Education. ISBN: 978-9353433123		
2.	Engineering Circuit Analysis, 9E, William H. Hayt Jr., Jack Jamie D. Phillips, Steven M. Durbin, McGraw Hill Educatio 978-9390185139		
3.	Problems and Solutions in Engineering Circuit Analysis, Wi McGraw Hill Education (India) Private Limited. ISBN: 978-		ck Kemmerly,
Web a	nd Video link(s):		
https://	archive.nptel.ac.in/courses/108/105/108105159/		
	rk Analysis by Prof. Tapas Kumar Bhattacharya, IIT Kharag	our	
	ks/Resources:		

D. Course Articulation Matrix (CAM)

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
#1	3												2	
#2		2											3	
#3			2											2
#4					1				1	1				2

			•	
5.4		Digital Logic D	0	
[As p	ber Choice Based		CBCS) & OBE Scheme]	
Course Code:		SEMESTER - P22EC304	Credits:	04
	ol. (I.T.D).	3:0:2	CIE Marks:	50
Teaching Hours/We				
Total Theory Teach Course Learning Obj	0	40	SEE Marks:	50
			nap, QM method and VEM	ſ
technique.		inques such as K-i	nap, Qivi methoù anu v Eivi	L
-	lement the com	binational logic ci	renits	
		s and sequential ci		
-	-	ential logic circuit		
	-	_	ate machine approach.	
1 0	-		OM, PLA and FPGA with	logic
implementation	-	·····,	-,	8
	τ	UNIT – I		8 Hours
Simplification Metho	ds and NAND/I	NOR Implementa	tion: The Map Method, Tw	VO-
		1	ND and NOR Implementat	tion,
Don't – Care Condition		-		
0	U		el Adder, Magnitude Compa	arator,
Encoders, Decoders, N				
Text 1: 3.1-3.3, 3.6, 3				1
Self-study	in RAM.	thod, Logic Synthe	esis and optimization, Deco	ders
component:		. T		
Practical Topics:		e Implementation it realization using	hasia gatas	
		it realization using		
			/subtractor using 7483 chip	
			cess–3 code conversion and	
	. /	NIT – II		8 Hours
Sequential Logic: Intr	oduction, Flip-F	Flops, Triggering o	f Flip-Flops.	
			Registers, Ripple Counters,	
Synchronous-counters.		-		
Text 1: 6.1-6.3, 7.1-7.	5			
Self-study	Setup and hold	time issues. flip-f	lop versus latches, Delay	
component:	elements, Wato	_		
Practical Topics:		6	ression/Combinational Logi	ic.
		1	1UX–74153 and DEMUX -	
			binary to gray and BCD to H	
	converte		•	
		-	or using gates and basic ope	erational study of
	Priority enco	oder using 74147.		

Stata 1		UNIT – III			8 Hours					
Sequeı Equiva Deriva	nce detector, Guid alent States, Equi- ation of Flip-Flop	Tables and Graph, General Models delines for Construction of State Gr valent Sequential Circuits, Reducin Input Equations. -14.3, 15.1,15.2, 15.4-15.6	aphs, Elimination	of Redu	ndant States,					
Self-s	•	Digital Camera Controller State N	Iachine. Bluetooth	n Control	ller.					
	oonent: tical Topics:		 Design 2/3 bit synchronous counters using Flip–Flops. Design 2/3 bit asynchronous counters using Flip–Flops. 							
		UNIT – IV			8 Hours					
Impler PLD& Gate A	mentation of Com #39;s, CPLD	and Storage Devices: Read-Only M binational Logic, Programmable Logis, XILINX XC9500 CPLD' LINX Spartan XL FPGA 's.	ogic Array (PLA),	Program	nmability of					
Self-s		Architecture and programming e	xamples of FPGA	's.						
_	tical Topics:	1. Design the Ring counters 2. Demonstration of FPGA.	and Johnson cour	nter.						
		UNIT – V			8 Hours					
Design	of Accumulator	f Arithmetic Logic Unit, Status Reg	gister, Design of S	muer, Pl	LICENSOF LIMIT					
Self-s	1: 7.7-7.8, 9.1-9. study	10 Intel 4004, 8085 processors, ARM								
comp Pract	1: 7.7-7.8, 9.1-9. study ponent: tical Topics:	 10 Intel 4004, 8085 processors, ARM Processors. 1. Demonstration of 7489, 16 2. Realization of Shift operation 	Machine and AM by 4 random acce ons using 7495.	D's						
comp Pract	1: 7.7-7.8, 9.1-9. study ponent: tical Topics:	 10 Intel 4004, 8085 processors, ARM Processors. 1. Demonstration of 7489, 16 	Machine and AM by 4 random acce ons using 7495.	D's ss memo H (Add						
comp Pract Cour COs	1: 7.7-7.8, 9.1-9. study conent: tical Topics: rse Outcomes: Or Course Outcor Course topics	 10 Intel 4004, 8085 processors, ARM Processors. 1. Demonstration of 7489, 16 2. Realization of Shift operation of completion of this course, student mes with Action verbs for the simplify the Boolean functions 	Machine and AM by 4 random acceons using 7495. s are able to: Bloom's Taxonomy	D's ss memo I (Add #)	Program Dutcome Iressed (PO					
comp Pract Cour COs CO1	1: 7.7-7.8, 9.1-9. study conent: tical Topics: rse Outcomes: On Course Outcom Course topics Apply K-Map to and minimize log Analyze the com	 10 Intel 4004, 8085 processors, ARM Processors. 1. Demonstration of 7489, 16 2. Realization of Shift operation of completion of this course, student mes with Action verbs for the simplify the Boolean functions 	Machine and AM by 4 random acce ons using 7495. s are able to: Bloom's Taxonomy Level	D's ss memo I (Add #) I	Program Dutcome Iressed (PO with BTL					
comp Pract Cour COs CO1 CO2	1: 7.7-7.8, 9.1-9. study ponent: tical Topics: se Outcomes: Or Course Outcor Course topics Apply K-Map to and minimize log Analyze the com circuit for logic f Develop and/or i given requirement	10 Intel 4004, 8085 processors, ARM Processors. 1. Demonstration of 7489, 16 2. Realization of Shift operation a completion of this course, student mes with Action verbs for the simplify the Boolean functions gic circuits. binational and sequential logic	Machine and AM by 4 random acce ons using 7495. s are able to: Bloom's Taxonomy Level Apply	D's ss memo I (Add #) I I	Program Dutcome Iressed (PO with BTL PO1(L3)					
comp Pract Cour COs CO1 CO2 CO3	1: 7.7-7.8, 9.1-9. study conent: tical Topics: Tree Outcomes: On Course Outcom Course topics Apply K-Map to and minimize log Analyze the com circuit for logic f Develop and/or i given requirement flops/MSI IC's/F Use knowledge of	10 Intel 4004, 8085 processors, ARM Processors. 1. Demonstration of 7489, 16 2. Realization of Shift operation an completion of this course, student mes with Action verbs for the simplify the Boolean functions gic circuits. binational and sequential logic function and/or timing diagram. mplement logic circuits for the	Machine and AM by 4 random accer ons using 7495. s are able to: Bloom's Taxonomy Level Apply Analyze	D's ss memo I (Add #) I H	Program Dutcome Iressed (PO with BTL PO1(L3) PO2(L4)					

Text Book(s):

- 1. M.Morris Mano, "Digital Logic and Computer Design", Pearson, 2020.ISBN: 978-93-325-4252-5.
- 2. Charles H Roth Jr, Larry L. Kinney, "Fundamentals of Logic Design", 7 th Edition, Thomson Learning, 2019.ISBN-13: 978-81-315-2615-6.
- 3. Michael D. Ciletti, "Advanced Digital Design with the Verilog HDL", 2 nd Edition, Pearson, 2011. ISBN-13: 9780133002546

Reference Book(s):

1. John.M Yarbrough, "Digital logic applications and Design", Pearson, Thomson Learning, 2006.ISBN: 981-240-62-1.

Web and Video link(s):

- 1.<u>https://nptel.ac.in/courses/108106177</u> -Course by Neeraj Goel, IIT Ropar.
- 2. <u>https://nptel.ac.in/courses/106105185</u> Course by Indranil Sengupta, IIT Kharagpur.
- 3. <u>https://ocw.mit.edu/courses/6-004-computation-structures-spring-</u> 2017/pages/syllabus/
 - Chris Terman, Massachusetts Institute of Technology.

E-Books/Resources:

Course Articulation Matrix (CAM)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
#1	3												3	
#2		2												2
#3			3											
#4				1										
#5			3						1	2				

		Signals and Sys	stems	
[As per			(BCS) & OBE Scheme]	
		SEMESTER -		
Course Code:		P22EC305	Credits:	04
Teaching Hours/Week	(L:T:P):	3:0:2	CIE Marks:	50
Total Theory Teaching		40	SEE Marks:	50
Course Learning Objec				
		and different operation	-	
e	•		e and discrete-time) like imp h in frequency and time don	
-	-	-	and linear constant coefficient	
equations.	system using i	impulse response i		
-	es of signals (C	CT/DT, periodic/no	on-periodic) in terms of com	plex
	- ·	ransform and Four	_	1
• Implement the sy	stems (any or	der) in Direct-form	m-I and Direct-form-II	
		UNIT – I		8 Hours
			ns of the independent variabl	
-	-	and unit step func	ctions, Continuous-time and	discrete-time
systems, basic system pro Text1: 1.1,1.2,1.3,1.4, 1	1			
		na on the nemicilia	ty anonary and narrow a sign	-1
Self-study component:	More problem	is on the periodici	ty, energy and power a signation	al.
Practical Topics:	1. Devel	op a MATLAB co	ode to generate the CTS and	DTS
		Periodic Signals		218
	b.	Exponential Sign	nals	
		Sinusoidal Signa		
		-	ode to generate the CTS and	DTS
		Exponentially Dar Step, Impulse and	mped Sinusoidal Signals	
		User defined func	-	
		JNIT – II		8 Hours
Linear Time Invariant S			ems- The Convolution sum,	
			of linear time-invariant syste	ems, Causal LTI
systems described by diff	ferential and di	ifference equation	s,	
Text1: 2.1 to 2.4.3				
Self-study		-	ity, time invariant and linear	rity of the
component:	system			. .
			ntation of systems (Direct for	orm-I and
Practical Tanica		t form-II)	to simulate difference aquat	tion
Practical Topics:			to simulate difference equat to find the frequency respon	
			fferential or difference equation	
	-	-	to perform convolution of s	

	UNIT – III		8 Hours				
Fourier Representation o	f Continuous-time (CT) Sig	nals: Fourier seri					
continuous-time periodic si	ignals, Properties of continuou	us –Time Fourier	Series. CT Non-Periodic				
	Aperiodic signals: The contin						
continuous- time Fourier T	ransform, Convolution proper	ty.					
Text1: 3.3, 3.5, 4.1,4.3,4.3	.1,4.3.5,4.3.7, 4.4	-					
Self-study component:	1. Examples on the con-	volution of two	discrete time signals				
Sen study component.	and Fourier transform		and signals				
	2. Properties of continuo	-	Fransform .				
	-	e fourier transform for periodic signals					
Practical Topics:		· · ·	plitude Modulated signal.				
Theorem Topics.	2. Write a MATLAB cod	-					
	UNIT – IV		8 Hours				
Discussion of CT sign		ion of Discovers 7					
	als and Fourier Representat						
	Representation Of continuous ntation for DT Non Periodic						
	fourier Transform, Properties						
Multiplication Property.	Tourier Transform, Properties	s of the Discrete-	This router transforms,				
1 1 2							
Text1: 7.1, 5.1, 5.3, 5.5	The Convolution property						
Self-study component:	The Convolution property						
Practical Topics:	 Write a MATLAB code to find Poles and Zeros of LTI systems. Write a MATLAB code to generate sampled signal of a discrete and 						
		-	npled signal of a discrete an				
	Continuous-time signa	ıl.					
	$\mathbf{UNIT} - \mathbf{V}$		8 Hours				
Z–Transforms: T he Z – tr	ansform, the region of conver	gence for the Z-t	ransform. The inverse Z-				
	- transforms, System function						
The Unilateral Z transform	-	C					
Text1: 10.1,10.2,10.3,10.5	,10.8,10.9						
Self-study component:		he unit impulse,	unit step, cosine signals an				
Sen-study component.	find the z transform us	_					
		ang uniterentiatio					
Practical Topics:	2. Analysis and character	rization of LTI sy	stems using Z-transforms.				
Practical Topics:	 Analysis and character Write a MATLAB co 	rization of LTI sy	stems using Z-transforms.				
Practical Topics:	 Analysis and character Write a MATLAB co the Z-transform. 	rization of LTI sy de to find Z-tran	sform and inverse of				
Practical Topics:	 Analysis and character Write a MATLAB co the Z-transform. Solve a given differ 	rization of LTI sy de to find Z-tran	sform and inverse of				
-	 Analysis and character Write a MATLAB co the Z-transform. Solve a given differ [Z-transform]. 	rization of LTI sy de to find Z-tran ence equation/sy	sform and inverse of				
-	 Analysis and character Write a MATLAB co the Z-transform. Solve a given differ 	rization of LTI sy de to find Z-tran ence equation/sy ents are able to:	stems using Z-transforms. sform and inverse of stem of linear equations				
-	 Analysis and character Write a MATLAB co the Z-transform. Solve a given differ [Z-transform]. 	rization of LTI sy de to find Z-tran ence equation/systems are able to: Bloom's	stems using Z-transforms. sform and inverse of stem of linear equations Program				
Course Outcomes: On co	 Analysis and character Write a MATLAB co the Z-transform. 2. Solve a given differ [Z-transform]. 	rization of LTI sy de to find Z-tran ence equation/sy ents are able to: Bloom's Taxonomy	stems using Z-transforms. sform and inverse of stem of linear equations Program Outcome				
Course Outcomes: On co	 Analysis and character Write a MATLAB co the Z-transform. Solve a given differ [Z-transform]. 	rization of LTI sy de to find Z-tran ence equation/systems are able to: Bloom's	stems using Z-transforms. sform and inverse of stem of linear equations Program				
Course Outcomes: On co	 Analysis and character Write a MATLAB co the Z-transform. 2. Solve a given differ [Z-transform]. 	rization of LTI sy de to find Z-tran ence equation/sy ents are able to: Bloom's Taxonomy	stems using Z-transforms. sform and inverse of stem of linear equations Program Outcome				
Course Outcomes: On co COs Course Outcome Course topics	 Analysis and character Write a MATLAB co the Z-transform. 2. Solve a given differ [Z-transform]. 	rization of LTI sy de to find Z-tran ence equation/sy ents are able to: Bloom's Taxonomy	stems using Z-transforms. sform and inverse of stem of linear equations Program Outcome Addressed (PO				
Course Outcomes: On co COs Course Outcome Course topics	 Analysis and character Write a MATLAB co the Z-transform. Solve a given differ [Z-transform]. Dempletion of this course, stude with Action verbs for the nowledge of mathematics for 	rization of LTI sy de to find Z-tran ence equation/sy ents are able to: Bloom's Taxonomy Level	Stems using Z-transforms. sform and inverse of stem of linear equations Program Outcome Addressed (PO #) with BTL				
Course Outcomes: On co COs Course Outcome Course topics CO1 Apply the basic kn signals and system	 Analysis and character Write a MATLAB co the Z-transform. Solve a given differ [Z-transform]. Dempletion of this course, stude with Action verbs for the nowledge of mathematics for 	rization of LTI sy de to find Z-tran ence equation/sy ents are able to: Bloom's Taxonomy Level	Stems using Z-transforms. sform and inverse of stem of linear equations Program Outcome Addressed (PO #) with BTL				

CO3	3 Ans	lvze a	nd inv	estigat	te fund	lament	al con	cents	Ev	aluate			PO3	
		•		0	to solv			-Pro		uiuut			,PO4(L3	3)
		U	ng prob			ve com	ipicx					(L+)	,I O+(L.))
	eng.	meern	ig prot	Jenis.										
CO4	4 Den	nonstr	ate the	know	ledge	of con	cepts c	f	Cr	eating		PC	5, PO9,	
	sign	als an	d syste	ems eit	ther in	team o	or]	PO10	
	indi	vidual	lly to a	ddress	engin	eering	proble	ems						
	usir	ig moo	lern er	igineer	ring to	ols								
Text l	Book(s):												
1.												awab, F	Pearson e	education
	asia/	PHI, 2	2 nd editi	on, 20	06. ISI	BN: 97	789332	55023	0, 933	255023	9			
2.	''Sig	nals a	and Sy	ystems	s'', Sir	non H	aykin	and B	arry V	/an Ve	en, 2nd	Editio	n John	Wiley &
	Sons	, 2nd	edition	2008.	. ISBN	:9788	126512	2652, 8	312651	2652				
Refer	ence I	Book(s	s):											
1.	"Sig	nals	and	syste	ems",	H.P.	Hsu,	R.Ra	njan,	Schau	n's o	utlines,	TMH	, 2006.
	ISBN	N:978()07066	59185,	00706	6918X	Κ							
2.	"Sig	nals	and S	ystem	s" , A	Nago	oorKar	ni, Mo	Graw	Hill 2	010 .	ISBN:	978007	0151390,
	0070	015139	93.											
3.	''Fu	ndam	entals	of Sig	nals a	nd Sys	stems'	, Mic	hael J	Roberts	, Govir	nd Shari	na, McC	Graw Hill
	2010	. ISBI	N: 007	07022	17, 97	80070′	702219).						
Web a	and V		• • •				_							
•					<u>com/w</u>	atch?	v=up5	stuwe	stg&a	mp;list	=PLW	Pirh4E	WFpHr	1ZCku
			mujv9											
•					<u>com/w</u>				-					
	-												ndex=3	
•	-		•			atch?	v=0nZ	Yen9v	v_eo&	amp;li	st=PLy	qSpQz	TE6M8	KJ-
	-		3nd27	-										
•	http	<u>s://ww</u>	w.you	tube.	<u>com/w</u>	atch?	v=uEI	VDG b	aE5c					
E-Boo	oks/Re	esourc	es:											
•	http	s://lin	k.sprii	iger.c	om/bo	<u>ok/10.</u>	1007/9	78-3-	031-02	<u>545-7?</u>	page=2	<mark>#book-</mark>	<u>header</u>	
	"Fu	ndame	entals	of Sig	nals &	kamp;	Syste	ms",	Benoi	t Boule	et, Cha	rles Riv	ver Mea	lia 2006,
	ISBI	N:1-58	8450-3	81-5, e	eISBN	: 1-58	450-66	0-1 .						
•	http	<mark>s://ml</mark> i	<u>ichour</u>	<mark>i.files</mark> .	word	oress.c	om/20	13/10	/ <mark>fund</mark> a	mental	s-of-sig	nals-ar	nd-syste	ms.pdf.
					D. Co	urse A	rticul	ation 1	Matrix	x (CAM	0			
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2

1

1

2

2

#1

#2

#3

#4

3

3

3

3

3

Linea	r Integrated Circuit Labora	atory	
[As per Choice Bas	sed Credit System (CBCS) & C	DBE Scheme]	
~ ~ ~ ~	SEMESTER – III	~	
Course Code:	P22ECL306	Credits:	01
Teaching Hours/Week (L:T:P):	0-0-2	CIE Marks:	50
Contact Period:	Lecture :2 Hr, Exam: 2Hr.	SEE Marks:	50
Prerequisite: Basic Electronics and			
	Learning Objectives (CLOs)		
This course aims to			
1. Provide the basic knowledge		herator, bread board	l, power supply
ammeter, voltmeter and how	• •		
2. Analyze the characteristics of			
3. Design Inverting and Non-i	nverting amplifiers, Summing	g, Subtracting and	Schmitt trigge
circuit using Op-Amp.	Integrator, Differentiating cir	ouit provision hal	f wave and fu
4. Demonstrate the working of wave rectifier using 741 IC	Integrator, Differentiating ch	cuit, precision nai	i wave allu iu
5. Design the RC phase shift os	cillators using On-amn		
6. Understanding the working	0 1 1	ltage regulator usi	ing IM 317 I
regulator	Drie using op rinp and ve	stuge regulator us	
	Course Content		
1. MOSFET drain and transfer			
2. Op-amp RC phase shift oscil	lator.		
3. Determining the Characterist	ic parameters of Op-Amp 741	IC,	
4. Design of Inverting and Non-	-inverting amplifier using 741	IC	
5. Op-amp as adder, subtractor	and voltage follower		
6. Op-amp as Integrator and Di			
7. Precision half wave and full			
	d zero crossing detection using	741 IC	
9. 4 bit R-2R DAC using Op-ar	1		
10. Voltage regulator using LM 3	317 IC regulator.		
Open ended experiments			
-	the voltage level monitor to en	•	en Vcc exceed
	71 op-amp with single power s	11 2	
2. Conduct an experiment to s output level to 5v.	sum two sinusoidal signals of p	eak amplitude 4v a	nd clip the
	elip negative half cycle at 2 V a	nd invert the signal	. Assume 5V

Course Outcome (CO)

CO #	Course Outcome	Bloom Taxonomy Levels	Program Outcome Addressed (PO #) with BTL
	Apply the knowledge of basic circuit concepts to experiment for understanding the basic operation and characteristics of 741 IC and MOSFET	Understand	PO1(L2)
	Conduct experiments to demonstrate concepts related to application of op-amps.	Analyze	PO2 (L4)
	Design the inverting and non-inverting amplifier, Schmitt trigger circuit, oscillator and voltage regulator for a given specification.	Creating	PO3 (L6)
	Investigate to analyze and design the open ended experiment for a given specification.	Evaluating	PO4 (L5)
	Ability to work effectively in a team to analyze and conduct an experiment for a given problem statement	Analyze	PO9 (L4)

Course Articulation Matrix (CAM)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
#1	1												1	
#2		3												3
#3			2											
#4				1										
#5									2					

	IOLOGY FOR EN ed Credit System (C SEMESTER – II	BCS) & OBE Scheme]	
Course Code	P22BFE308	CIE Marks	50
Teaching Hours/Week (L: T:P: S)	2:0:0:0	SEE Marks	50
Credits	02	Total Marks	100
 To familiarize the students with To enable the students with an u structures. To provide the students an app substitute products fornatural sy To motivate the students develop 	nderstanding of bio reciation of how bi ystems.	design principles to create	e novel devices and re-designed as
Definition of design - Design Vs Engi Design– The General Design process hinking.	0 0	6	0 0
 Teaching-Learning Process (General These are sample Strategies, which tead outcomes. Explanation via real life probasessions, reflective and questi Instructions with interactions Use of ICT tools, including Y Flipped classroom sessions (Industrial visits, Guests talks Students' participation throug assignments). Use of gamification tools (in Students' seminars (in solo or group)) BIOMOLECULES AND THEIR A Carbohydrates (cellulose-based wate Vaccine for Rabies and RNA vacc (Proteins as food – whey protein and agents/detergents), Enzymes (glucose	acher can use to acc olem, situation mode oning /inquiry-base in classroom lectur /ouTube videos, rel ~10% of the classes and competitions for gh audio-video base both physical/hybri /oral presentations. Module-1 APPLICATIONS (or filters, PHA and ines for Covid19, meat analogs, Plan -oxidase in biosens	elling, and deliberation of d teaching. es (physical/hybrid). ated MOOCs, AR/VR/MF). or learning beyond the syll d content creation for the d classes) for creative lear QUALITATIVE): PLA as bioplastics), Ni Forensics – DNA finge at based proteins), lipids	solutions, hands-on R tools. labus. syllabus (as ming outcomes. (5 Hours) ucleic acids (DNA rprinting), Proteins (biodiesel, cleaning bio-bleaching).
	Module-2		(5 Hours)
HUMAN ORGAN SYSTEMS ANI	D BIO DESIGNS -	1 (QUALITATIVE):	
Brain as a CPU system (architecture, Robotic arms for prosthetics. Engine	-		

Robotic arms for prosthetics. Engineering solutions for Parkinson's disease).Eye as a Camera system (architecture of rod and cone cells, optical corrections, cataract, lens materials, bionic eye).Heart as a pump system (architecture, electrical signalling - ECG monitoring and heart related issues, reasons for blockages of blood vessels, design of stents, pace makers, defibrillators).

Department of Electronics & Communication Engineering

Module-3

HUMAN ORGAN SYSTEMS AND BIO-DESIGNS - 2 (QUALITATIVE):

Lungs as purification system (architecture, gas exchange mechanisms, spirometry, abnormal lung physiology - COPD, Ventilators, Heart-lung machine).Kidney as a filtration system (architecture, mechanism of filtration, CKD, dialysis systems). Muscular and Skeletal Systems as scaffolds (architecture, mechanisms, bioengineering solutions for muscular dystrophy and osteoporosis).

Module-4

(5 Hours)

(5 Hours)

NATURE-BIOINSPIRED MATERIALS AND MECHANISMS (QUALITATIVE):

Echolocation (ultrasonography, sonars), Photosynthesis (photovoltaic cells, bionic leaf). Bird flying (GPS and aircrafts), Lotus leaf effect (Super hydrophobic and self-cleaning surfaces), Plant burrs (Velcro), Shark skin (Friction reducing swim suits), Kingfisher beak (Bullet train). Human Blood substitutes - hemoglobin-based oxygen carriers (HBOCs) and perflourocarbons (PFCs).

Module-5

(5 Hours)

TRENDS IN BIOENGINEERING (QUALITATIVE):

Bioprinting techniques and materials, 3D printing of ear, bone and skin. 3D printed foods. Electrical tongue and electrical nose in food science, DNA origami and Biocomputing, Bioimaging and Artificial Intelligence for disease diagnosis. Self- healing Bioconcrete (based on bacillus spores, calcium lactate nutrients and biomineralization processes) and

Bioremediation and Biomining via microbial surface adsorption (removal of heavy metals like Lead, Cadmium, Mercury, Arsenic).

Course outcomes (Course Skill Set)

At the end of the course the student will be able to:

- Elucidate the basic biological concepts via relevant industrial applications and case studies.
- > Evaluate the principles of design and development, for exploring novel bioengineering projects.
- > Corroborate the concepts of biomimetics for specific requirements.
- > Think critically towards exploring innovative biobased solutions for socially relevant problems.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50)in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

Continuous Internal Evaluation:

Three Unit Tests each of **20 Marks (duration 01 hour)**

- First test at the end of 5th week of the semester
- Second test at the end of the 10^{th} week of the semester
- Third test at the end of the 15th week of the semester

Two assignments each of **10 Marks**

- First assignment at the end of 4th week of the semester
- Second assignment at the end of 9th week of the semester

Group discussion/Seminar/quiz any one of three suitably planned to attain the COs and POs for **20 Marks** (duration 01 hours)

• At the end of the 13th week of the semester

The sum of three tests, two assignments, and quiz/seminar/group discussion will be out of 100 marks and will be scaled down to 50 marks

(to have less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course).

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (**duration 03 hours**)

- The question paper will have ten questions. Each question is set for 20 marks.
- There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 2 subquestions), **should have a mix of topics** under that module.

The students have to answer 5 full questions, selecting one full question from each module.

The SEE question paper will be set for 100 marks and marks scored will be proportionately reduced to 50 marks

Suggested Learning Resources:

- Human Physiology, Stuart Fox, Krista Rompolski, McGraw-Hill eBook. 16th Edition, 2022
- Biology for Engineers, Thyagarajan S., Selvamurugan N., Rajesh M.P., Nazeer R.A., Thilagaraj W., Barathi S., and Jaganthan M.K., Tata McGraw-Hill, New Delhi, 2012.
- Biology for Engineers, Arthur T. Johnson, CRC Press, Taylor and Francis, 2011
- Biomedical Instrumentation, Leslie Cromwell, Prentice Hall 2011.
- Biology for Engineers, Sohini Singh and Tanu Allen, Vayu Education of India, New Delhi, 2014.
- Biomimetics: Nature-Based Innovation, Yoseph Bar-Cohen, 1st edition, 2012, CRC Press.
- Bio-Inspired Artificial Intelligence: Theories, Methods and Technologies, D. Floreano and C. Mattiussi, MIT Press, 2008.
- Bioremediation of heavy metals: bacterial participation, by C R Sunilkumar, N Geetha A C Udayashankar Lambert Academic Publishing, 2019.
- 3D Bioprinting: Fundamentals, Principles and Applications by Ibrahim Ozbolat, Academic Press, 2016.
- Electronic Noses and Tongues in Food Science, Maria Rodriguez Mende, Academic Press, 2016
- Blood Substitutes, Robert Winslow, Elsevier, 2005

Web links and Video Lectures (e-Resources):

- VTU EDUSAT / SWAYAM / NPTEL / MOOCS / Coursera / MIT-open learning resource
- https://nptel.ac.in/courses/121106008
- https://freevideolectures.com/course/4877/nptel-biology-engineers-other-non-biologists
- https://ocw.mit.edu/courses/20-020-introduction-to-biological-engineering-design-spring-2009
- https://ocw.mit.edu/courses/20-010j-introduction-to-bioengineering-be-010j-spring-2006
- https://www.coursera.org/courses?query=biology
- https://onlinecourses.nptel.ac.in/noc19_ge31/preview
- https://www.classcentral.com/subject/biology
- https://www.futurelearn.com/courses/biology-basic-concepts

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- Group Discussion of Case studies
- Model Making and seminar/poster presentations
- Design of novel device/equipment like Cellulose-based water filters, Filtration system mimicking the kidney, Bioremediation unit for E-waste management, AI and ML based Bioimaging,

Co	ourse Title : ADDITIONAL MAT		
		ntry: Common to all branches)	
Course Code: P2		CIE Marks:50	
Credits: L:T:P:S			
	irs per week: 04 :L=2,T=2		
0	5	arning course P21MATDIP31 vi	-
		f complex trigonometry, vector	
order differentia	0	ntiation and various methods of	solving mist
	UNIT – I		12 Hours
Complex Trigono		tions & properties. Modulus and amp	
- 0	argand's diagram, De-Moivre's the		
		and subtraction. Multiplication of v	ectors (Dot and
Cross products). Sc	alar and vector triple products-sim	ple problems	
Self-study	De-Moivre's theorem (withou	t proof). Roots of complex number -	Simple problems.
component:			
	UNIT – II		10 Hours
Differential Calcu		en the radius vector and the tange	
	series and Maclaurin's series expan		1 1
		nsions- Illustrative examples.	
Partial Differentia		nsions- Illustrative examples. s theorem for homogeneous function	is of two
	tion: Elimentary problems. Euler' ivatives-differentiation of composi-	s theorem for homogeneous function ite and implicit function.	
variables. Total der	tion: Elimentary problems. Euler' ivatives-differentiation of composi Review of successive different	s theorem for homogeneous function ite and implicit function. tiation. Formulae for n th derivatives of	of standard
	tion: Elimentary problems. Euler' ivatives-differentiation of composi Review of successive different functions- Liebnitz's theorem	s theorem for homogeneous function ite and implicit function.	of standard
variables. Total der Self-study	tion: Elimentary problems. Euler' ivatives-differentiation of composi Review of successive different	s theorem for homogeneous function ite and implicit function. tiation. Formulae for n th derivatives of	of standard
variables. Total der Self-study component:	tion: Elimentary problems. Euler' ivatives-differentiation of composi Review of successive different functions- Liebnitz's theorem approximations. UNIT – III	s theorem for homogeneous function ite and implicit function. tiation. Formulae for n th derivatives of	of standard bians, errors & 10 Hours
variables. Total der Self-study component: Integral Calculus	ation: Elimentary problems. Euler' ivatives-differentiation of compositive Review of successive differentiations- functions- Liebnitz's theorem approximations. UNIT – III s: reduction formulae for sin ⁿ x, compared to the single	s theorem for homogeneous function ite and implicit function. tiation. Formulae for n th derivatives of (without proof). Application to Jacob	of standard bians, errors & 10 Hours tion of these with
variables. Total der Self-study component: Integral Calculus	ation: Elimentary problems. Euler' ivatives-differentiation of composition Review of successive differentiation functions- Liebnitz's theorem approximations. UNIT – III s: reduction formulae for sin ⁿ x, comples. applications of integration	s theorem for homogeneous function ite and implicit function. tiation. Formulae for n th derivatives of (without proof). Application to Jacob $\cos^n x$, and $\sin^m x \cos^m x$ and evaluat	of standard bians, errors & 10 Hours tion of these with
variables. Total der Self-study component: Integral Calculus standard limits-Ex area of solids of re	ation: Elimentary problems. Euler' ivatives-differentiation of compositives Review of successive differentiations- Liebnitz's theorem approximations. UNIT – III s: reduction formulae for sin ⁿ x, comples. Applications of integrations	s theorem for homogeneous function ite and implicit function. tiation. Formulae for n th derivatives of (without proof). Application to Jacob $\cos^n x$, and $\sin^m x \cos^m x$ and evaluat	of standard bians, errors & 10 Hours tion of these with blume and surface
variables. Total der Self-study component: Integral Calculus standard limits-Ex area of solids of re Self-study	ation: Elimentary problems. Euler' ivatives-differentiation of compositives Review of successive differentiations- Liebnitz's theorem approximations. UNIT – III s: reduction formulae for sin ⁿ x, comples. Applications of integrations	s theorem for homogeneous function ite and implicit function. tiation. Formulae for n th derivatives of (without proof). Application to Jacob $\cos^n x$, and $\sin^m x \cos^m x$ and evaluat on to area, length of a given curve, vo	of standard bians, errors & 10 Hours tion of these with blume and surface
variables. Total der Self-study component: Integral Calculus standard limits-Ex area of solids of re	ation: Elimentary problems. Euler' ivatives-differentiation of compositives Review of successive differentiations- Liebnitz's theorem approximations. UNIT – III s: reduction formulae for sin ⁿ x, canaples. Applications of integration evolution. Differentiation under integral	s theorem for homogeneous function ite and implicit function. tiation. Formulae for n th derivatives of (without proof). Application to Jacob $\cos^n x$, and $\sin^m x \cos^m x$ and evaluat on to area, length of a given curve, vo	of standard bians, errors & 10 Hours tion of these with blume and surface
variables. Total der Self-study component: Integral Calculus standard limits-Ex area of solids of re Self-study component:	ation: Elimentary problems. Euler' ivatives-differentiation of compositives-differentiation of compositives-differentiations Review of successive differentiations- Liebnitz's theorem approximations. UNIT – III s: reduction formulae for sin ⁿ x, completed and since the	s theorem for homogeneous function ite and implicit function. tiation. Formulae for n th derivatives of (without proof). Application to Jacob $\cos^n x$, and $\sin^m x \cos^m x$ and evaluat on to area, length of a given curve, vo	of standard bians, errors & 10 Hours tion of these with olume and surface -Simple 10 Hours
variables. Total der Self-study component: Integral Calculus standard limits-Ex area of solids of re Self-study component: Vector Differentia on a space curve. S	tion: Elimentary problems. Euler'ivatives-differentiation of compositivatives-differentiation of compositivatives-differentiations-Review of successive differentiationfunctions- Liebnitz's theorem approximations.UNIT – IIIs: reduction formulae for $sin^n x$, contractive conditions.Differentiation under integration evolution.Differentiation under integral in problems.UNIT – IVUNIT – IVUNIT – IVUNIT – IVUNIT – IV	s theorem for homogeneous function ite and implicit function. tiation. Formulae for n th derivatives of (without proof). Application to Jacob $\cos^n x$, and $\sin^m x \cos^m x$ and evaluate on to area, length of a given curve, vol- sign (Integrals with constants limits)	of standard bians, errors & 10 Hours ion of these with olume and surface -Simple 10 Hours a particle moving
variables. Total der Self-study component: Integral Calculus standard limits-Ex area of solids of re Self-study component: Vector Differentia on a space curve. S only).	tion: Elimentary problems. Euler'ivatives-differentiation of compositivatives-differentiation of compositivatives-differentiations-Review of successive differentiationfunctions- Liebnitz's theorem approximations.UNIT – IIIs: reduction formulae for $sin^n x$, contractive conditions.Differentiation under integration evolution.Differentiation under integral in problems.UNIT – IVUNIT – IVUNIT – IVUNIT – IVUNIT – IV	s theorem for homogeneous function ite and implicit function. tiation. Formulae for n th derivatives of (without proof). Application to Jacob $\cos^n x$, and $\sin^m x \cos^m x$ and evaluate on to area, length of a given curve, vot sign (Integrals with constants limits) ctions. Velocity and acceleration of a bradient, Divergence, Curl and Laplac	of standard bians, errors & 10 Hours ion of these with olume and surface -Simple 10 Hours a particle moving
variables. Total der Self-study component: Integral Calculus standard limits-Ex area of solids of re Self-study component: Vector Differentia on a space curve. S	ation: Elimentary problems. Euler' ivatives-differentiation of compositives-differentiation of compositives-differentiations. Review of successive differentiations- Liebnitz's theorem approximations. UNIT – III s: reduction formulae for sin ⁿ x, completed and the single statements of the single statements. Differentiation under integral approximation statement. UNIT – IV tion: Differentiation of vector functions. Generation statements.	s theorem for homogeneous function ite and implicit function. tiation. Formulae for n th derivatives of (without proof). Application to Jacob $\cos^n x$, and $\sin^m x \cos^m x$ and evaluate on to area, length of a given curve, vot sign (Integrals with constants limits) ctions. Velocity and acceleration of a bradient, Divergence, Curl and Laplac	of standard bians, errors & 10 Hours ion of these with olume and surface -Simple 10 Hours a particle moving
variables. Total der Self-study component: Integral Calculus standard limits-Ex area of solids of re Self-study component: Vector Differentia on a space curve. S only). Self-study component:	ation: Elimentary problems. Euler' ivatives-differentiation of composite Review of successive differentiations- Liebnitz's theorem approximations. UNIT – III s: reduction formulae for sin ⁿ x, complete applications of integration evolution. Differentiation under integral is problems. UNIT – IV tion: Differentiation of vector functions. G Solenoidal and irrotational vect UNIT – V	s theorem for homogeneous function ite and implicit function. tiation. Formulae for n th derivatives of (without proof). Application to Jacol $\cos^n x$, and $\sin^m x \cos^m x$ and evaluat on to area, length of a given curve, vol- sign (Integrals with constants limits) ctions. Velocity and acceleration of a bradient, Divergence, Curl and Laplac or fields-Problems.	of standard bians, errors & 10 Hours tion of these with olume and surface -Simple 10 Hours a particle moving cian (Definitions 10 Hours
variables. Total der Self-study component: Integral Calculus standard limits-Ex area of solids of re Self-study component: Vector Differentia on a space curve. S only). Self-study component: Ordinary differen	tion: Elimentary problems. Euler' ivatives-differentiation of composite Review of successive differentiations- Liebnitz's theorem approximations. UNIT – III s: reduction formulae for $sin^n x$, completed	s theorem for homogeneous function ite and implicit function. tiation. Formulae for n th derivatives of (without proof). Application to Jacob $\cos^n x$, and $\sin^m x \cos^m x$ and evaluat on to area, length of a given curve, vot sign (Integrals with constants limits) ctions. Velocity and acceleration of a bradient, Divergence, Curl and Laplac or fields-Problems.	of standard bians, errors & 10 Hours ion of these with olume and surface -Simple 10 Hours a particle moving cian (Definitions 10 Hours legree differential
variables. Total der Self-study component: Integral Calculus standard limits-Ex area of solids of re Self-study component: Vector Differentia on a space curve. S only). Self-study component: Ordinary differen	tion: Elimentary problems. Euler' ivatives-differentiation of composite Review of successive differentiations- Liebnitz's theorem approximations. UNIT – III s: reduction formulae for $sin^n x$, completed	s theorem for homogeneous function ite and implicit function. tiation. Formulae for n th derivatives of (without proof). Application to Jacol $\cos^n x$, and $\sin^m x \cos^m x$ and evaluat on to area, length of a given curve, vol- sign (Integrals with constants limits) ctions. Velocity and acceleration of a bradient, Divergence, Curl and Laplac or fields-Problems.	of standard bians, errors & 10 Hours ion of these with olume and surface -Simple 10 Hours a particle moving cian (Definitions 10 Hours legree differential
variables. Total der Self-study component: Integral Calculus standard limits-Ex area of solids of re Self-study component: Vector Differentia on a space curve. S only). Self-study component: Ordinary differen equations: homogen types.	ution : Elimentary problems. Euler' ivatives-differentiation of composite Review of successive differentiations- Liebnitz's theorem approximations. UNIT – III s: reduction formulae for $sin^n x$, completed for sintegration evolution. Differentiation under integral is problems. UNIT – IV tion: Differentiation of vector functions. G Solenoidal and irrotational vector UNIT – V tial equations (ODE's): Introduct neous, exact, linear differential equations of first order and	s theorem for homogeneous function ite and implicit function. tiation. Formulae for n th derivatives of (without proof). Application to Jacol $\cos^n x$, and $\sin^m x \cos^m x$ and evaluate on to area, length of a given curve, vot sign (Integrals with constants limits) ctions. Velocity and acceleration of a gradient, Divergence, Curl and Laplac or fields-Problems.	of standard bians, errors & 10 Hours ion of these with olume and surface -Simple 10 Hours a particle moving cian (Definitions 10 Hours degree differential ducible to above jectories of
variables. Total der Self-study component: Integral Calculus standard limits-Ex area of solids of re Self-study component: Vector Differentia on a space curve. S only). Self-study component: Ordinary differen equations: homoger	ution : Elimentary problems. Euler' ivatives-differentiation of composite Review of successive differentiations- Liebnitz's theorem approximations. UNIT – III s: reduction formulae for $sin^n x$, completed for sintegration evolution. Differentiation under integral is problems. UNIT – IV tion: Differentiation of vector functions. G Solenoidal and irrotational vector UNIT – V tial equations (ODE's): Introduct neous, exact, linear differential equations of first order and	s theorem for homogeneous function ite and implicit function. tiation. Formulae for n th derivatives of (without proof). Application to Jacol cos ⁿ x, and sin ^m xcos ^m x and evaluat on to area, length of a given curve, vo sign (Integrals with constants limits) ctions. Velocity and acceleration of a bradient, Divergence, Curl and Laplac for fields-Problems.	of standard bians, errors & 10 Hours ion of these with olume and surface -Simple 10 Hours a particle moving cian (Definitions 10 Hours degree differential ducible to above jectories of

Cour	Course Outcomes: After the successful completion of the course, the students are able to							
CO1	Demonstrate the fundamental concepts –in complex numbers and vector algebra to analyze the problems arising in related area of engineering field.							
CO2	Identify – partial derivatives to calculate rate of change of multivariate functions							
CO3	Apply - the acquired knowledge of integration and differentiation to evaluate double and triple integrals to compute length surface area and volume of solids of revolution and indentify velocity, acceleration of a particle moving in a space							
CO4	Find analytical solutions by solving first order ODE's which arising in different branches of engineering.							
Text B	Book:							
B.S	6. Grewal: Higher Engineering Mathematics, Khanna Publishers, New Delhi, 43 rd Ed., 2015.							
Refere	ence books:							
	1. E. Kreyszig: Advanced Engineering Mathematics, John Wiley & Sons, 10 th Ed., 2015.							

2. N.P.Bali and Manish Goyal: Engineering Mathematics, Laxmi Publishers, 7th Ed., 2007.

Course Title	MATHEMATICAL AND NUMERICAL TECHNIQUE											
			(C	OMMON TO I	EC,EE, CS,	IS)						
Course Code		P22MA401B										
Category		Mathematics for EC,EE, CS, IS										
Scheme and		Theo	ory/Practic		Total teaching	Credits						
Credits	L	Т	Р	SS	Total	hours	Cleans					
Credits	02	02	0	00	04	40	04					
CIE Marks: 50	SEE Marks: 50 Total Max. marks=100 Duration of SEE: 03 Hours											

Cours	e Learning Objectives:		
1	Familiarize the importance of calculus associated with one variable and two	variables.	
2	Analyze Engineering problems by applying Ordinary Differential Equations	5	
3	Develop the knowledge of Linear Algebra to solve system of equation by usi	ng matrice	es
		ſ	
Unit	Syllabus content	No. o	f hours
Omt	Synabus content	Theory	Tutorial
	Calculus of complex functions : Introduction to complex variables. Definitions- limit, continuity, differentiability and Analytic functions of $f(z)$: Cauchy- Riemann equations in Cartesian and polar forms (no proof)-Harmonic function and Problems. Applications to flow problems. Construction of analytic functions when $u \text{ or } v \text{ or } u \pm v$ are given- Milne-Thomson method. Conformal transformations: Introduction. Discussion of transformations for $W = z^2$, $W = e^z$, $W = z + \frac{1}{Z}$ where $z \neq 0$ Self-Study : Derivation of Cauchy- Riemann equation in Cartesian and polar form	06	02
	Complex integration: Bilinear Transformations- Problems, line integrals of complex function. Cauchy's theorem, Cauchy's integral formula. Taylor's and Laurent's series (Statements only)- illustrative examples. Singularities, poles and residues with examples, Cauchy's Residues Theorem (statement only)- Illustrative examples. Self-Study:- Contour integration Type-I & Type-II problems	06	02
III	Statistical Methods: Statistics: Brief review of measures of central tendency and dispersion. Moments, skewness and kurtosis. Curve Fitting: Curve fitting by the method of least squares, fitting the curves of the forms $= ax + b$, $y = ab^x$ and $y = ax^2 + bx + c$. Correlation and regression : Karl Pearson's coefficient of correlation and rank correlation- problems, Regression analysis, lines of regression and problems. Self-Study: Fit a curve of the form $y = ax + b$, $y = a + bx + cx^2$	06	02

IV	Probability and Distribution:		
	Random variables and Probability Distributions: Review of random		
	variables. Discrete and continuous random variables-problems. Binomial,		
	Poisson, Exponential and Normal distributions (with usual notation of mean	0.6	0.2
	and variance)-:problems.	06	02
	Joint Probability Distributions : Introduction, Joint probability and Joint		
	distribution of discrete random variables and continuous random variables		
	Self-study: Geometric and Gamma distributions- problems.		
V	Stochastic Processess and sampling theory:		
	Markov Chains: Markov chains, Classification of Stochastic processes,		
	Probability vector, Stochastic matrix, Regular stochastic matrix, Transition		
	probabilities and Transition probability matrix.		
	Testing of Hypothesis: Sampling distributions-introduction. Standard error,	06	02
	Type-I and Type-II errors. Testing of hypothesis and confidence intervals for	00	02
	means. Student's t –distribution and Chi-square distribution as a test of		
	goodness of fit - Illustrative examples only.		
	Self-study: Classification of Stochastic process, Bernoulli Process, Poisson		
	Process.		

COURS	E OUTCOMES: On completion of the course, student should be able to:
CO1:	Understand fundamental concepts in calculus of complex functions,
	statistics, probability and special functions.
CO2:	Apply tools taught to analyze transformations arising in engineering field
	and evaluate complex integrals and draw statistical inferences.
CO3:	Analyze problems in engineering field by employing special functions, complex
	functions and statistical methods.
CO4:	Evaluate integrals of complex functions, regression and correlation coefficient,
	probability of a discrete and continuous variable, series solution of special
	differential equations.

TEACHING - LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos

TEXT BOOKS

- 1. B.S. Grewal, Higher Engineering Mathematics (44th Edition 2018), Khanna Publishers, New Delhi.
- 2. E. Kreysizig, Advanced Engineering Mathematics, John Wiley and sons, 10th Ed. (Reprint) 2016.

REFERENCE BOOKS.

- V. Ramana: Higher Engineering Mathematics, McGraw –Hill Education,11th Ed..
 H. C. Taneja, Advanced Engineering Mathematics, Volume I & II, I.K. International PublishingHouse Pvt. Ltd., New Delhi.
- 3. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2010.

ONLINE RESOURCES

- 1. http://www.nptel.ac.in
- 2. https://en.wikipedia.org
- 3. https://ocw.mit.edu/courses/18-03sc-differential-equations-fall-2011/
- 4. https://ocw.mit.edu/courses/18-06sc-linear-algebra-fall-2011/
- 5. https://math.hmc.edu/calculus/hmc-mathematics-calculus-online-tutorials/differentialequations/first-order-differential-equations/

QUESTION PAPER PATTERN (SEE)												
	PART-B											
One question from each unit carrying two Answer any TWO sub questions for maximum 18 marks												
PO1 PO2 PO3 PO4 PO						PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2										

001	-	-							
CO2	2	3							
CO3	3	2							
CO4	2	3							
Strengtl	h of corr	elation:	Low-1, N	Medium-	2, High-	-3			

	0	and Digital Co		
[As per C	Choice Based	l Credit System (C - SEMESTER	CBCS) & OBE Scheme] - IV	
Course Code:		P22EC402	Credits:	03
Teaching Hours/Week (L:T:P):	3:0:0	CIE Marks:	50
Total Number of Teachi	ng Hours:	40	SEE Marks:	50
Course Learning Objecti	ves: This co	urse will enable th	e students to:	
 generation, detection domain and freque Explain the aspection Explain quantization sy Explain quantization Describe the prince Describe and continuodulation scheme Analyze different occurrence of ISI 	ion and appl ency domain s of samplin ystem and out on process, tiple of DM, rast various les such as A coding sche and advanta	ication of Amplitu ag of signal in digi itline the use of co quantities and con ADM, DPCM sys aspects of differer SK, PSK, QPSK, mes adopted in PA ges of pulse shapin JNIT – I	nmanding of signals in PCM stems. It digital coherent and non-co	signal in time el of digital system. bherent
	ideband am		n, Amplitude modulation, bas	ndwidth-efficient
Self-study component:	Phase locke	ed loop.	Frequency Division Multiple	exing (FDM),
		NIT – II		8 Hours
	ing FM wav	es, demodulation	Nonlinear modulation, ban of FM signals, effects of nor vers.	
Self-study component:		asting system, QA	М.	
		NIT – III		8 Hours
Signal Sampling and Rec Second per Hertz, Non i theorem, Pulse Code M	onstruction, deal Practic lodulation (Taxation: N	Maximum Inform cal Sampling Ana (PCM),Advantage Ion uniform Qua	n from Uniform Samples, P. nation Rate: Two Pieces of alysis, Some Applications of s of Digital Communication ntization, Transmission Bar ms.	Information per of the Sampling ion, Quantizing,
Self-study component:	Random V	ariables. Mat lab/0	Octave code for Sampling and	d Reconstruction
2012 Stady components	of Low pas		un and and and and and and and	
	-	$\overline{\mathbf{T} - \mathbf{IV}}$		8 Hours
Modulation (DPCM), Ada PRINCIPLES OF DIGI coding, Pulse shaping, Scr	ptive Differe TAL DAT	ential PCM (ADPC A TRANSMISSI	ON: Digital communicatio	
Text 1: 5.4-5.7, 8.1-8.5				

Self-stu	idy component:	Adaptive delta modulation, Video Co	ompression		
		$\mathbf{UNIT} - \mathbf{V}$			8 Hours
higher da binary p Signal sp	ata rate, Digital ca	ATION SYSTEM: Eye diagrams, rrier systems, M-ary digital carrier me neral binary signaling, coherent rece timum detection.	odulation, Optim	num li	near detector for
Self-stu	idy component:	Noise in Communication systems.			
Course	Outcomes: On co	ompletion of this course, students are	able to:		
COs	Course Outcome topics	es with Action verbs for the Course	Bloom's Taxonomy Level	Ado	Program Outcome dressed (PO #) with BTL
1		ic knowledge of mathematics for nalysis of Analog and Digital stem.	Understand and Apply	PO	l(L2), PO2(L3)
1 t	modulation schem	ze performance of different es and coherent receivers, including nal integrity and system efficiency in os.	Apply	PO	l(L3), PO2(L3)
5 6 0	such as pulse shap enhance signal trai	digital communication techniques, ing, coding, and modulation, to nsmission efficiency, reduce igate errors in analog and digital stems	Analyze	PO2	2(L3), PO3(L4)
CO4 I i	Evaluate the proce	ss of analog-to-digital conversion, g, quantization, and encoding, to nsmission quality and minimize noise	Analyze		PO2(L3)
Гехt Во 1. " N	ok(s): Modern Digital a A.Gupta 4 th Editic	and Analog Communication System on ISBN-13:978-0-19-947628-2, ISBN			Ding,Hari
1. 2. 1 3.	Sons, Inc.2013, IS 'Digital Comm (SBN:9780070707 'Principles of Ele	to analog and digital communication BN:9788126536535. unication", P. Ramakrishna R 764. ectronic Communication Systems", n, ISBN : 978-0-07-337385-0	ao, TATA o	cGraw	Hill, 2011
Web and	d Video link(s):				
1. A	Analog Communi	cation: <u>https://archive.nptel.ac.in/co</u>	ourses/117/105/	<u>11710</u>	<u>5143/</u>
2. D	Digital Communic	ation: <u>https://nptel.ac.in/courses/11</u>	7105077		
	e	ommunication Techniques:			
<u>h</u>	ttps://onlinecour	ses.nptel.ac.in/noc22_ee118/preview	7		

E-Books/Resources:

- 1. <u>https://www.skylineuniversity.ac.ae/pdf/computer/An%20Introduction%20to%2</u> <u>0Digital%20Multimedia.pdf</u>
- 2. https://edisciplinas.usp.br/pluginfile.php/5251120/mod_resource/content/1/B.%20 P.%20Lathi%2C%20Zhi%20Ding%20%20Modern%20Digital%20and%20Ana log%20Communication%20SystemsOxford%20University%20Press%20%28200 9%29.pdf

D. Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
#1	2	1											2	1
#2	3	1											3	1
#3		2	1											2
#4		2												2

[As pe	r Choice Based	omagnetic Fiel Credit System (SEMESTER –	(CBCS) & OBE Scheme	.]
Course Code:		P22EC403	Credits:	03
Teaching Hours/Week (La	:T:P):	3:0:0	CIE Marks:	50
Total Number of Teaching	g Hours:	40	SEE Marks:	50
• Describe the basic 1 vector method.	wledge of elect aws, properties laws, properties of magnetic for s equations to t s of electromag <u>UNI</u> Coulomb's law urface charge, ition of Gauss's 1. Vector	tromagnetic fields and equations and equations rces and inducta ime varying elec- gnetic waves. T - I v and Field inter Electric Flux de Law: Point cha	ds and waves of radio co of static electric field of static magnetic field ince. etromagnetic waves.	using 3– dimensiona using 3 – dimensiona 8 Hours to Continuous charg vector and divergence.
		ations of Gauss		
		<u>Γ – II</u>	law	8 Hours
Electrostatic Fields Part 2: and V, An Electric Dipole ar Electric Fields in materia Relaxation time, Boundary c Electrostatic Boundary–va Text1:3.4, 3.5, 4.7 to 4.9, 5 Self-study component:	nd Flux lines. al Space: Con- onditions. lue Problems: .3, 5.8, 5.9, 6.2	vection and Co Poisson's and La	onduction current, Cor aplace's equations, Unic	ntinuity equations an
Sen-study component:		ance and Capaci		
		T – III		8 Hours
Magnetostatics Fields: Bio magnetic flux density, Cur Magnetic scalar and vector p Magnetic Forces: Forces du Text 1:7.2-7.7, 3.7, 8.2, 8.4,	ot– Savart's la l of a vector otentials. le to magnetic f	aw, Ampere's a and Stroke the	orem, Maxwell's equa	ons of Ampere's lav tions for static field
Self-study component:	-	etic torque and nors and inductan		
	UNIT	$\Gamma - IV$		8 Hours
forces, displacement current, Electromagnetic Wave Pr dielectrics, Plane waves in fr Text 1:9.2-9.6, 10.2, 10.3, 10	Maxwell's equ opagation: In ee space, Wave	ations in final for troduction, Wa	ves in general, Wave	ential. propagation in Loss

	1 DI ' I I' I / '	10 10 1	
Self-study component:	1. Plane waves in Losses dielectrics and		ctors.
	2. Reflection of plane wave in normal UNIT – V		8 Hours
Paging of Ways Propagat			
Guided Waves, Unguided W Ground Wave Propagati Surface and Space Wave, T Space Wave Propagation: of Curvature of Earth, Effect Sky Wave Propagation Reflection of Sky Waves b and Skip Distance, Relation	ion: Introduction, Definition and Broad Ca Vaves, Different modes of wave propagation introduction, Space Wave and Surface filt of Wave Front due to Ground Losses. Introduction, Field Strength Relation, Effect of the strength relation, Effect of Introduction, Structural Details of the y Ionosphere, Ray Path, Critical Frequency, between MUF and the Skip Distance. 1, 23.3 to 23.5, 24.1 to 24.6, 25.1, 25.2, 25.4 1. Scattering Phenomena, Troposphere	t. ce Wave, Tran cts of Imperfec of Hills and Bui Ionosphere, 1 MUF, LUF of 4, 25.5, 25.6.	sition between t Earth, Effects ldings. Refraction and , Virtual Height
	 Loss Calculations. Electromagnetic Interference (EMI) Compatibility (EMC). 	and Electroma	gnetic
Course Outcomes: On co	mpletion of this course, students are able to:		
COs Course Outcomes v	Bloom's Taxonomy Level	Level Indicator	
	of physics and vector calculus to compute lectric and Magnetic fields.	Apply	PO1(L3)
CO2 Analyze Electric and problems	Magnetic fields to solve boundary value	Analyze	PO2(L4)
CO3 Evaluate the pa time as governed by Maxw	-varying electromagnetic fields and waves vell's equations.	Evaluate	PO3 (L5)
	applications in electric and electronic	Design	PO5, PO9,PO10, (L6)
University Press 6 946185-6 2. "Antennas and Wa	ectromagnetics" Matthew N.O. Sadiku, S oth edition, 2018.ISBN-13: 978-0-19-946 ave Propagation", John D Kraus, Ronald J aw Hill, 4th Edition, 2015.ISBN: 978007067	185-1, ISBN-1 Marhefka and	
 Hill, 5th edition 199 2. "Electromagnetics" Revised 2nd edition 3. "Engineering Electromagnetics" 	with Application", John Kraus and Daniel 99.ISBN: 9780071164290 ", Joseph A Edminister, Adapted by: Vishn , 2013.ISBN:9780070353961 tromagnetics", William H. Hayt Jr. John 11, 8th edition, 2015. ISBN: 9789339203276	u priye. McGra A. Buck and N	w–Hill,
Web and Video link(s): <u>https://archive.npte</u>	el.ac.in/courses/108/106/108106073/		

E-Books/Resources:

- 1. Electromagnetic Fields and Energy By Hermann A. Haus | James R. Melcher | 1998 PDF
- 2. Electromagnetic Field Theory: A Problem Solving Approach By Markus Zahn | 2003 | 752 pages PDF
- 3. Introduction to Electromagnetic Engineering by Roger F.Harrington McGraw-Hill, 1958

D. Course Articulation Matrix (CAM)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
#1	3												2	
#2		2											3	
#3			2											2
#4					1				1	1				2

	Digital	Design Using V	erilog HDL		
[As pe	0	d Credit System (0	E Scheme]	
		SEMESTER –	IV		
Course Code:		P22EC404	Cre	edits:	04
Teaching Hours/Week (L:T:P):	3:0:2	CIE	E Marks:	50
Total Theory Teaching	Hours:	40	SEI	E Mrks:	50
Course Learning Objecti	ives: This cou	rse will enable the	e students to:		
• Explain the workin	g knowledge	of a broad variety	of Verilog ba	sed topic for g	lobal
understating of Ver	rilog HDL bas	ed design.			
• Describe the practi		-	-		
• Explain the logical		-	-		
• Explain the basics		<u>+</u>	as PLI and log	gic synthesis.	1
		NIT – I			8 Hours
Basic Concepts: Lexical (Compiler Direc	ctives.
Modules and Ports: Mod			•		
Gate-Level Modeling: Ga Dataflow Modeling: Con	• •	•	Expressions ()norators and	Operanda
Operator Types, Example	-	giintents, Delays,	Expressions, C	operators, and	Operatios,
Self-study component:		rilog code and te	st bench for fo	llowing questi	on and verify it
Sen study component.		EDA tool (Xilinx			
		dy typical design		-	
		sign 2 to 1 mux us	-	-	
		sign 4 bit mod 13	-		t and
	outpu	t values in comma	and window.		
Practical Components	1. Write	Verilog HDL cod	le to realize al	l the logic gate	es.
		a Verilog H			
	comb	inational designs			-
	a.				
		Encoder (with a	nd without pri	ority)	1
		NIT – II			8 Hours
Behavioral Modeling: Str			•	0	
Statements, Multiway Bran	0 1	· •			ocks. Examples.
Tasks and Functions: Di					
Self-study component:	U	n 8-bit ALU Usin n clock with time	0		of 10 %
	-	always & initial s	-	and duty cycle	01 40 /0
Practical Components		a Verilog H		for the f	ollowing
		inational designs.	– r-simi	1	B
		Multiplexer and D	emultiplexer		
		Code converter.	-		
	c. (Comparator.			
		a VERILOG HD			
		Adder, parallel	adder and s	ubtractor using	ng three
	Mode	ling styles.			

	UNIT – III	8 Hours						
Useful Modeling Techr	iques: Procedural Continuous Assignments, Overridir	g Parameters,						
Conditional Compilation a	nd Execution, Time Scales, Useful System Tasks.							
Timing and Delays: Type	es of Delay Models, Path Delay Modeling, Timing Check	s, Delay Back-						
Annotation.								
0	witching-Modeling Elements, Examples.							
Self-study component:	1. Design 16 to 1 mux using 4 to 1 mux and display all	input and						
	output values in command window.							
	2. Create a design that uses the full adder example above the full adder e							
	conditional compilation (`ifdef). Compile the fulladd							
	defparam statements if the text macro DPARAM is o	-						
	define statement; otherwise, compile the fulladd4 wi instance parameter values.	un module						
	 Switch Level Verilog Description for XOR gate. 							
Practical Components	1. Develop and simulate a VERILOG HDL code for	or 8-bit						
Tractical Components	booth Multiplier.	51 0-011						
	2. Develop the VERILOG HDL code for the following flip–							
	flops, SR, D, JK, T and counter							
	UNIT – IV	8 Hours						
User Defined Primitives:	UDP basics. Combinational UDPs, Sequential UDPs, UDP	Fable						
Shorthand Symbols, Guide	lines for UDP Design.							
Programming Language	Interface: Uses of PLI, Linking and Invocation of PLI Task	s.Internal Data						
Representation, PLI Librar								
	log HDL: What Is Logic Synthesis? Impact of Logic Synthe	esis, Verilog						
HDL Synthesis, Synthesis								
Self-study component:	1. Design the 4-bit synchronous counter shown belo	w (Use						
	the UDP jk_ff).	0(3)						
		Q[3]						
		J L T A T						
	enable							
Practical Components	1. Design and develop VERILOG HDL code for a 4-t	it hingry serial						
	adder and simulate.	n omary serial						
	2. Write VERILOG HDL code to display messages	on the given						
	seven segment display and LCD and accepting Hex							
	data.							
	3. Write VERILOG HDL code to control speed, direc	tion of DC and						
	Stepper motor.							

		UNIT – V		8 Hours						
		ilog HDL: Verification of the Gate-Leve	el Netlist, Mod	eling Tips for Logi						
		uential Circuit Synthesis.								
	nced Verification I cation.	Sechniques: Traditional Verification Flow	w, Assertion C	hecking, Formal						
	tudy component:	1. A 1-bit full subtractor has three inputs x, y, and z (previous borrow)								
Sen 5	dudy component.	and two outputs D(difference) and B(borrow). The logic equations for								
		D and B are as follows:								
		• $\mathbf{D} = \mathbf{x'y'z} + \mathbf{x'yz'} + \mathbf{xy'z'} + \mathbf{xyz}$								
		• $B = x'y + x'z + yz$ 2. Write the Verilog RTL description for the full subtractor. Synthesize								
		the full subtractor, using any technol								
		Optimize for fastest timing. Apply i	•••	-						
		the gate-level netlist and compare the								
	ical Components	1. Write VERILOG HDL code to a	-	00						
(4 Ho	ours)	Temperature sensors and display	the data on L	CD panel or sever						
		segment display. 2. Write VERILOG HDL code to ge	nerate differer	nt waveforms (Sine						
		Square, Triangle, Ramp etc.,) usin								
		amplitude.	0	1 2						
		3. Write VERILOG HDL code to simu	ulate Elevator of	operations.						
Cours	se Outcomes: On co	ompletion of this course, students are able	e to:							
	Course Outcomes	s with <i>Action verbs</i> for the Course	Bloom's							
COs	topics		Taxonomy	Level Indicator						
001	A1 (11111111		Level							
COI		ge of digital fundamentals to understand n Verilog HDL and writing the Verilog	L2	PO1(L2)						
		ional and sequential circuits.								
CO2		digital circuit and develop Verilog	L4	PO2(L4)						
	model for given dig									
CO3		national and sequential circuits and	L6	PO3(L6)						
<u>CO4</u>		odel for the given specifications.	1.2	$\mathbf{DO}4(\mathbf{I} 2)$						
CO4	application using E	n through synthesis and demonstrate the DA tools	L3	PO4(L3) PO5(L6),PO9(L3)						
				PO10(L3)						
	look(s):	I								
1.		Guide to Digital Design and Synthesis	", Samir Palni	tkar Pearson						
		Edition, ISBN 978-81-775-918-4.								
	ence Book(s): "Advanced Digita	l Design with the Verilog HDL", Mic	hael DCilatti	PHI ISBNI						
1.	9789332584464, 93	e		1 111, 13DIN.						
2.	,	Primer", J. Bhaskar, BS Publications	s, ISBN: 9788	8178000145,						
	8178000148									
3.		f Digital Logic with Verilog Desig	, <u>,</u>	brown and						
	ZvonkoVranesic, T	MH, ISBN: 9780073380544, 007338054	/							

Web and Video link(s):

- 1. <u>https://youtu.be/VS9JzfJ6Oxg</u>
- 2. https://youtu.be/wiNDn19GpRU

E-Books/Resources:

D. Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
#1	2												2	
#2		3												3
#3			2											
#4				1	2				2	1				

Department of Electronics &	& Communication	Engineering
-----------------------------	-----------------	-------------

[As po		Microcontroll Credit System (er CBCS) & OBE Scheme]	
		SEMESTER –	IV	
Course Code:		P22EC405	Credits:	04
Teaching Hours/Weel	k (L:T:P):	3:0:2	CIE Marks:	50
Total Theory Teachin	g Hours:	40	SEE Marks:	50
Course Learning Obje	ctives: This cour	rse will enable th	ne students to:	
• Provide the	basic knowledge	of embedded sy	ystems.	
• Outline the	architecture of M	ISP430.		
• Make use of	f the instruction s	sets and addressi	ing modes for writing pro	ograms.
	working and app			0
	Low-Power Mod		-	
	the operation and	-		
	_	NIT – I		8 Hours
Embedded Electronic			rs: What and where are	
systems, Approaches to	Embedded Syst	ems, Small Mic	procontrollers, Anatomy	
Small Microcontroller, N	•		Contractions In a	1. V .
			iew—Pin-Out, the Insi	
-	-	lemory Mapped	input and output, Clock	k Generator,
Exceptions: Interrupts an Text1: 1.1, 1.2, 1.3, 1.4		1 1 3 1 5 1 6 ¹	77	
				roal time
Self-study component:	application		application of MSP430 in	i leai tille
component.			ntal development to deve	lon programs for
	microconti			hop programs for
Practical Topics:			lition, Subtraction, mult	tiplication
(6 Hours)		-	ementing operations.	upneation,
(0110015)		-	e and exchange, sortin	g. finding
		smallest element	•	6,
		IT – II		8 Hours
Architecture of the N			rocessing Unit, Address	
			on set, Examples, Reflec	0
CPU and Instruction Set			· 1 /	
Text1:5.1, 5.2, 5.3, 5.4	, 5.5, 5.6, 5.7, 5.	8.		
Self-study	1. Light LED	's in C and Asse	embly Language.	
component:	2. Access to t	the microcontrol	ller for programming and	debugging along
		nstration boards		
Practical Topics:		-	tructions: AND, OR, X0	
			cations, Conditional C.	ALL and
	RETURN			
		ng experiments:	. .	
	2. Program	to blink the LEI	D's using on-chip timer.	

	UNIT – III		8 Hours						
Functions, Interrupt	s and Low-Power Modes: Functions and	Subroutines. V							
_	is called?, Storage for Local Variables,								
	ning a Result, Interrupts, what happens when	•							
	outines, Issues Associated with Interrupt	-	· ·						
Operation.									
-	6.4, 6.6, 6.7, 6.8, 6.9, 6.10.								
Self-study	1. Study of assembly language/ c-progra	amming tools	with programming						
component:	exercises.	-							
	2. Develop and Implement a assembly level program to Flash LED's								
	with frequency of 1Hz using software	delay and sub	routine.						
Practical Topics:	1. Interfacing an LCD unit to MSP430F2								
	2. Generation of different wave forms us	ing DAC inter	face.						
	UNIT – IV		8 Hours						
	Timer, BasicTimer1, Timer_A, Measurem								
	e: Press and Release of button, Output		nuous Mode,						
-	in the sampling mode, Timer_B, what Time	er where?							
	.4, 8.4.1, 8.5, 8.8, 8.9, 8.10.								
Self-study	1. Study of ouput in the up mode- Edge-A	0							
component:	2. Design and develop a assembly level p		erate						
	pseudorandom stream of bits using shi	-							
Practical Topics:	1. Stepper motor interface and speed con		motor.						
	2. Measurement of pressure, temperature	, weight.							
	UNIT – V		8 Hours						
-	em: Analog input and output: Com	-							
	Issues, Analog-to-Digital Conversion: S								
	ed capacitor SAR ADC. TheADC10 Succes	ssive-Approxi	mation ADC,						
-	ADC10, ADC conversion Sigma-Delta.								
Text1: 9.1, 9.2, 9.3, 9									
Self-study	1. Study of ADC12 Successive-Approxim		CC						
component:	2. Examine whether direct connection to								
	connection of the signal is required for	r conversions (of analog signals to						
	digital signals.		·						
Practical Topics:	1. Measurement of time and frequency usi	ing timers and	interrupts.						
~ ~ ~	2. Temperature monitoring system.	_							
Course Outcomes:	On completion of this course, students are ab	ole to:							
			Program						
Course Outco	mes with Action verbs for the Course	Bloom's	Outcome						
COs Course outcomes with renow verbs for the course Dioon s Outcome topics Taxonomy Addressed (Pe									
Level with BTL									
CO1 Apply the know	ledge of logic design to understand the	Understand							
	it Microcontroller (MC), its instruction set,	Chaerstand	PO1(L2)						
-	es and other features.								
	rking of different peripheral components	Analyze	PO2 (L4)						
associated with		i mary 20	F U2 (L4)						
		1							

	Develop logical skills to write programs using MSP430	Creating	PO3 (L6)
	instruction set and by using 'C' for the given Engineering		
	Problems.		
CO4	Investigate to analyze and write a software code using	Evaluating	PO4, PO5 (L5)
	modern tool for a given specification.		, , ,
CO5	Ability to work indusial and in a team effectively to analyze	Analyze	PO9, PO10 (L4)
	and write a report for a given problem		
Text l	Book(s):		
	1. "MSP430 Microcontrollers Basics", John H. Davies,	Newnes	
	(Elsevier Science), 2008, ISBN: 978-0-7506-8276-3		
Refer	ence Book(s):		
	1. ,"Getting Started with the MSP430 Launchpad",	Adrian Fern	andez, Dung
	Dang, Newnes (Elsevier Science), 2013, ISBN: 978-0-12	24116009	
	2. "Programmable Microcontrollers with Application	ns: MSP430	LaunchPad
	with CCS and Grace" Cem Unsalan, H. Deniz	z Gurhan, N	IcGraw Hill
	Publications, 2013, ISBN: 978-0071830034.		
Web a	and Video link(s):		
	https://www.youtube.com/watch?v=16M7aqN6dmo		
E-Boo	oks/Resources:		
<u>ht</u>	tps://www.academia.edu/38330666/MSP430_Microcontro	oller_Basics_	<u> John_H_Davies</u>

D. Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
#1	2												2	
#2		3												3
#3			2											
#4				1	2									
#5									2	1				

0	Digital Communication Lab ased Credit System (CBCS) & C SEMESTER – IV	•							
Course Code:	P22ECL406	Credits:	01						
Teaching Hours/Week (L:T:P):	0-0-2	CIE Marks:	50						
Contact Period:	Lab: 36 Hrs., Exam: 3 Hrs.	36 Hrs., Exam: 3 Hrs. SEE Marks: 50							
Cour	rse Learning Objectives (CLO	os)							
This course aims to:									
• Provide the basic practical diode characterization and at	knowledge of Analog and Dig tenuation.	ital Fiber Optic li	inks, laser,						
• Demonstrate the measureme Aperture and WDM MUX- I	nt of various parameters of Op DEMUX.	otical fiber losses,	Numerical						
• Demonstrate the generation a techniques such as AM, PAM	and detection of analog signals <i>I</i> .	using various mod	dulation						
• Provide the basic practical ki	nowledge of digital modulation	& demodulation.							
• Design and Analyze the free and Astable multi-vibrators.	quency response of Second ord	er active filters us	sing op-Am						
	Course Content								
 frequency domain (Use Spec 5. Demonstration of ASK, FSK 6. Simulation of QPSK transmitt frequency offset (Using WIC 7. Design an A-stable Multi-vit 8. Design Second order active f HPF and BPF. 	Detection in time domain and its trum Analyser). , PSK and DPSK modulation and ter and receiver taking into acco COMM–T Kit). Dirator using IC555 Timer.	nd Demodulation. unt the phase and							
Open Ended Experiments:	Unatomoria Champa comonata danair	a Calenaitt Triana	. 0						
1. Analyse and Understand the Circuit.	Hysteresis Curve generated usin	ig semmu ingge	op-amp						
	(BER) and Analyse the Eye Pa	ttern generated in	a Digital						
Transmission using Light F	· · · · ·	Benerated III							
REFERENCE BOOKS:									
1. "Introduction to Fiber Op		ajan, Cambridge	University						
 Press, Cambridge, UK 1988. 2. "Fiber Optical Communic Sons Inc. 2002. 	ation System", 3 rd edition Go	vind P. Agrawal,	John wiley						
3. "Optical Fiber Communica	ation Principles and Systems' w Hill Publishing Company Ltc								
4. "An Introduction to Analog John Wiley 2004.		•	•						
5. "Advanced Digital Com Bhargava Rama Gowda, CB	nunication Laboratory Mar S Publishers & Distributors Pvt.								

Course Outcomes

CO #	Course Outcome	Bloom's Taxonomy Level	Level indicator Program Outcome	
CO1	Apply the basic knowledge of communication	Apply	L3(PO1, PO9,PO10)	
	to determine attenuation, losses and other			
	parameters.			
CO2	Analyze the operation of different Analog and	Analyze	L4(PO1, PO2,	
	Digital modulation and demodulation schemes.		PO9,PO10)	
CO3	Evaluate by applying basic knowledge of	Evaluate	L5(PO2,PO9, PO10)	
	communication theory the working of TDM,			
	WDM-MUX and WDM-DEMUX.			
CO4	Design and Evaluate Second Order Active	Create	L6(PO3, PO9,PO10)	
	Filters and Multi-vibrator.			

D. Course Articulation Matrix (CAM)

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
#1	2								2	1			2	
#2	2	3							2	1			2	3
#3		2							2	1				2
#4			1						2	1				

	e :ADDITIONAL MATH		
-	-	(CBCS) & OBE Scheme] Common to all branches)	
Course Code: P22MATDIP40	· ·	CIE Marks:50	
Credits: L:T:P:S: 3:1:0:0			
No of lecture hours per week:	04 :L=2,T=2		
Course Objectives: The mandatory learning course: concepts of linear algebra, introdu various techniques/ methods to	actory concepts of second	& higher order differential equ	ations along with
probability theory.			
Linear Algebra: Introduction - R	UNIT – I		10 Hours
Consistency of system of linear ec methods. Eigen values and Eigen Self-study component:	vectors of a square matrix.	amilton theorem (without proc	•
		zampies.	14 Hours
Higher order ODE's: Linear diff	UNIT – II	d and higher order equations w	14 Hours
coefficients. Homogeneous /non-ł parameters. Solution of Cauchy's	nomogeneous equations. In	verse differential operators. an	d variation of
Self-study component:	Method of undetermined		1
	UNIT – III		10 Hours
Multiple Integrals: Double and tri of order of integration. Vector Integration: Vector Integra volume integrals. Green's, Stokes	tion: Integration of vector	functions. Concept of a line int	
Self-study component:	Orthogonal curvilinear	coordinates.	
	UNIT – IV		12 Hours
Laplace transforms: Laplace trans transforms of periodic function an of inverse Laplace transforms. Ev	d unit step function-Proble aluation of Inverse transfor	ms only. Inverse Laplace trans ms by standard methods.	forms: Definition
Self-study component:	Application to solutions differential equations.	of linear differential equations	and simultaneous
	UNIT – V		6 Hours
Probability: Introduction. Sample theorems. Conditional probability	– illustrative examples.		ultiplication
Self-study component:	State and prove Bayes's t	heorem.	
Course Outcomes: After the	successful completion of	the course, the students are	able to
CO1 Apply matrix theory for algebra.	solving systems of linear	equations in the different a	reas of linear
CO2 Solve second and highe damped/un-damped vib	-	tions occurring in of electr	ical circuits,

CO3 Identify - the technique of integration to evaluate double and triple integrals by change of variables, and vector integration technique to compute line integral

CO4 Explore the basic concepts of elementary probability theory and, apply the same to the problems ofdecision theory.

TEXT BOOKS

B.S. Grewal: Higher Engineering Mathematics, Khanna Publishers, New Delhi, 43rd Ed., 2015

REFERENCE BOOKS

- 1. E. Kreyszig: Advanced Engineering Mathematics, John Wiley & Sons, 10th Ed., 2015.
- 2. N.P.Bali and Manish Goyal: Engineering Mathematics, Laxmi Publishers, 7th Ed., 2007.