

P.E.S. COLLEGE OF ENGINEERING, MANDYA

(An Autonomous Institution affiliated to VTU, Belagavi) Bachelor of Engineering (I – Semester) NEP Scheme of Teaching and Examination [CBCS with OBE]

		I – Semester [Phy	sics Group]						
Sl.	Course Code	Course Title	Teaching	Hr	s / W	eek	Credits	Examination Marks		
No.	Course Code	Course flue	Department	L	Т	Р	Creuits	CIE	SEE	Total
1	P21MA101	Engineering Mathematics - I	MA	3	2	-	4	50	50	100
2	P21PH102	Engineering Physics	PH	2	2	-	3	50	50	100
3	P21CV103	Engineering Mechanics	CV	3	-	-	3	50	50	100
4	P21ME104	Elements of Mechanical Engineering	ME	2	2	-	3	50	50	100
5	P21EE105	Basic Electrical Engineering	EE	2	2	-	3	50	50	100
6	P21MEL106	Basic Mechanical Engineering Science Laboratory	ME/AU/IP	-	-	2	1	50	50	100
7	P21PHL107	Engineering Physics Laboratory	PH	-	-	2	1	50	50	100
8	P21HSMC108	Employability Enhancement Skills - I	HSMC	-	2	-	1	50	50	100
9.	P21AEC109A	Health & Wellness	-	1	50	50	100			
		Total					20	450	450	900

	I – Semester [Chemistry Group]										
Sl.	Course Code	Course Title	Teaching	Hr	rs / Week		Credits	Examination Marks			
No.	Course coue	Course mat	Department	L	Т	Р	creatis	CIE	SEE	Total	
1	P21MA101	Engineering Mathematics - I	MA	3	2	-	4	50	50	100	
2	P21CH102	Engineering Chemistry	СН	2	2	-	3	50	50	100	
3	P21CS103	Problem-solving through C	3	-	-	3	50	50	100		
4	P21MED104	Computer-Aided Engineering Drawing ME 2 2 -					3	50	50	100	
5	P21EC105	Basic Electronic Basic Electronic Devices and EC 2 2 -					3	50	50	100	
6	P21CSL106	C Programming Laboratory	CS	-	-	2	1	50	50	100	
7	P21PCHL107	Engineering Chemistry Laboratory	СН	-	-	2	1	50	50	100	
8	P21HSMC108	Employability Enhancement Skills - I HSMC - 2 -						50	50	100	
9	P21AEC109B	Ecology & Environment	-	1	50	50	100				
	•	Total			•		20	450	450	900	

CIE: Continuous Internal Evaluation, SEE: Semester End Examination

AICTE Activity Points to be earned by the students admitted for BE Programme (For more details refer to Chapter 6, AICTE Activity Point Programme, Model Internship Guidelines): Over and above the academic grades, the BE regular student admitted to the 4 years Degree programme and every student entering 4 years Degree programme through lateral entry, shall earn 100 and 75 Activity Points respectively for the award of degree through AICTE Activity Point Programme. Students transferring from other institutions and Universities to the fifth semester are required to earn 50 Activity Points from the year of entry to PES College of Engineering, Mandya. The Activity Points earned shall be reflected on the student's eighth semester Grade Card. The activities can be spread over the years, anytime during the semester weekends and holidays, as per the liking and convenience of the student from the year of entry to the programme. However, the minimum hours' requirement should be fulfilled. Activity Points (non-credit) do not affect SGPA/CGPA and shall not be considered for vertical progression. In case students fail to earn the prescribed activity Points, the Eighth semester Grade Card shall be issued only after earning the required activity Points. Students shall be awarded for the degree only after the release of the Eighth semester Grade Card.

P.E.S. COLLEGE OF ENGINEERING, MANDYA

(An Autonomous Institution affiliated to VTU, Belagavi) Bachelor of Engineering (II – Semester) NEP Scheme of Teaching and Examination [CBCS with OBE]

	II – Semester [Physics Group]									
SI.	Course Code	Course Title Teaching Hrs / Week		Credits	Examination Marks					
No.	course coue	Course mat	Department	L	Т	Р	Cituto	CIE	SEE	Total
1	P21MA201	Engineering Mathematics - II	MA	3	2	-	4	50	50	100
2	P21PH202	Engineering Physics PH 2 2 -					3	50	50	100
3	P21CV203	Engineering Mechanics	CV	3	-	-	3	50	50	100
4	P21ME204	Elements of Mechanical Engineering	ME	2	2	-	3	50	50	100
5	P21EE205	Basic Electrical Engineering EE				-	3	50	50	100
6	P21MEL206	Basic Mechanical Engineering Science Laboratory	ME/AU/IP	-	-	2	1	50	50	100
7	P21PHL207	Engineering Physics Laboratory	PH	-	-	2	1	50	50	100
8	P21HSMC208	Employability Enhancement Skills - II HSMC - 2 -				1	50	50	100	
9	P21AEC209A	Health & Wellness	-	1	50	50	100			
	•	Total	•	•	•		20	450	450	900

	II – Semester [Chemistry Group]									
SI.	Course Code	Course Title	Teaching			Credits	Examination Marks			
No.	Course Coue	Course rue	Department	L	Т	Р	Creuits	CIE	SEE	Total
1	P21MA201	Engineering Mathematics - II	MA	3	2	-	4	50	50	100
2	P21CH202	Engineering Chemistry	СН 2 2 -				3	50	50	100
3	P21CS203	Problem-solving through C	CS 3				3	50	50	100
4	P21MED204	Computer-Aided Engineering Drawing	ME	-	3	50	50	100		
5	P21EC205	Basic Electronic Basic Electronic Devices and Circuits	EC	2	2	-	3	50	50	100
6	P21CSL206	C Programming Laboratory	CS	-	-	2	1	50	50	100
7	P21PCHL207	Engineering Chemistry Laboratory	СН	-	-	2	1	50	50	100
8	P21HSMC208	Employability Enhancement Skills - II	HSMC	-	2	-	1	50	50	100
9	P21AEC209B	Ecology & Environment	-	1	50	50	100			
	1	Total					20	450	450	900

CIE: Continuous Internal Evaluation, SEE: Semester End Examination

AICTE Activity Points to be earned by the students admitted for BE Programme (For more details refer to Chapter 6, AICTE Activity Point Programme, Model Internship Guidelines): Over and above the academic grades, the BE regular student admitted to the 4 years Degree programme and every student entering 4 years Degree programme through lateral entry, shall earn 100 and 75 Activity Points respectively for the award of degree through AICTE Activity Point Programme. Students transferring from other institutions and Universities to the fifth semester are required to earn 50 Activity Points from the year of entry to PES College of Engineering, Mandya. The Activity Points earned shall be reflected on the student's eighth semester Grade Card. The activities can be spread over the years, anytime during the semester weekends and holidays, as per the liking and convenience of the student from the year of entry to the programme. However, the minimum hours' requirement should be fulfilled. Activity Points (non-credit) do not affect SGPA/CGPA and shall not be considered for vertical progression. In case students fail to earn the prescribed activity Points, the Eighth semester Grade Card shall be issued only after earning the required activity Points. Students shall be awarded for the degree only after the release of the Eighth semester Grade Card.

ENGINEERING MATHEMATICS-I

Course Code:	P21MA101	Credits:	04
Teaching Hours/Week (L:T:P):	3:2:0	CIE Marks:	50
Total Number of Teaching Hours:	50	SEE Marks:	50

- Apply principles of mathematics through Calculus and Differential Equations that serves as an essential tool in several engineering applications.
- Acquire knowledge of multivariate functions, types of derivatives involved with these functions and their applications
- Appreciate the significance of vector differentiation and its applicability to Electromagnetic theory, Mechanics and other allied areas.
- Recognize and model differential equations, apply analytical techniques to compute solutions for engineering problems.

UNIT – I	10 Hours
	10 Hours

Diferential Calculus-I: Basics of Polar Coordinates. Polar curves- angle between the radius vector and the tangent, angle of intersection. Pedal equation (for polar curves) - problems only. Derivatives of arcs, curvature and radius of curvature-Cartesian, parametric, polar and pedal forms (No derivation)-Problems only. Centre and circle of curvature: Applications to evolutes and involutes.

Self-Study Component: Review of Differential Calculus, nth derivative of standard functions and Leibnitz's rule.

UNIT – II	10 Hours					
Diferential Calculus-II: First fundamental theorem of Differential Calculus	culus-Lagrange's and					
Cauchy's mean value theorem (statement only) - Illustrative examples, Ta	ylor's theorem for a					
function of single variable and Maclaurin's series expansion (statement only) Illustrative examples.						
Indeterminate forms- L'Hospital's rule (without proof), $0x\infty$, $\infty - \infty$, 0^0 , ∞^0 and 1	°°.					

Self-Study Component: Continuity and Differentiability, Rolle's theorem and its geometric interpretation, indeterminate forms $\frac{0}{0}$ and $\frac{\infty}{2}$.

UNIT – III	10 Hours					
Partial Differntial Calculus: Introduction to Partial Differential Calculus-Partial Differentiation and						
problems, Euler's theorem and Euler's extension theorem (No proof-pr	coblems only). Total					
derivatives-differentiation of composite and implicit functions-Problems. V	Vector differentiation:					
Differentiation of vectors/scalar point functions. Velocity and acceleration of a	a particle moving on a					
space curve. Gradient of a scalar point function, directional derivative -Probl	ems only. Divergence					
and curl, solenoidal and irrotational vector fields-Problems only.						

Self-study component: Elementary problems of partial differentiation, vector identities.

	UNIT – IV	10 Hours
Integral (Calculus : Reduction formulae for $\int \cos^n x$, $\int \sin^n x$, $\int \sin^m x \cos^n x$	$x^n x$ and evaluation of
of curves form and revolution.	limits $[0, \pi/2]$. Differentiation under integral sign (integrals with contant its applications connected with standard curves viz., Cissoids, Cardioids. Application of integrals to area, length, volume and survey component : Reduction formula for $\int tan^{n}x$, $\int sec^{n}x$ and its reduction	Astroid in parametric face area of solids of
	cloid, Strophoid.	r
	UNIT – V	10 Hours
equations; equations. polar curv examples f	Differential Equations-I : (ODE's)- solutions of first order and fir reducible to homogeneous equation, Exact and reducible to Exact Applications of first order and first degree ODE's-orthogonal trajectores. Newton's cooling, simple L-R circuits and Laws of decay are from engineering field.	t equations, Bernoulli ories of Cartesian and nd growth-Illustrative
Equations.		
Course O	utcomes: On completion of this course, students are able to:	
CO – 1:	Apply the knowledge of calculus to solve problems related to perform applications in determining the bentness of a curve.	olar curves and its
CO – 2:	Explain mean value theorems and evaluate indeterminate form an Taylor's and Maclaurin's series.	d power series using
CO – 3:	Differentiate the function of several variables and composite func- vector differentiation.	ctions. Evaluate the
CO – 4:	Evaluate some standard integrals by applying reduction formula a problems.	and solve application
CO – 5:	Solve differential equations of first order and solve application probl field.	ems in engineering
Text Book	s(s):	
201	P. Bali and Manish Goyal, Engineering Mathematics, Lakshmi Public	
Reference		
2. G. rep 3. J. S	Kreyszig, Advanced Engineering Mathematics, John Wiley and Sons, B. Thomas and R. L. Finney, Calculus and Analytical geometry, 9 th Ed rint, 2002. Stewart, Calculus-Early Transcendentals, 7 th Edition, Cengage, 2012.	
Web and	Video link(s):	
2. http	ps://www.youtube.com/watch?v=czt5Wmj_rvI ps://nptel.ac.in/courses/111/105/111105121/ ps://nptel.ac.in/courses/111/106/111106100/	

	COU	RSE A	RTIC	CULA	TION	MA'	ΓRIX	[Engi	neeri	ng Ma	themat	tics-I - I	P21MA1	01]
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO-1	3	2												
CO-2	3	2												
CO-3	3	2												
CO-4	3	1												
CO-5	2	3												
					3 – I	HIGH,	2 - 1	MEDI	UM, 1	l - LOV	V			

	г. <u>~</u> –	10 1 0		-	
	[As per Choice B	•	(CBCS) & OBE Sche	eme]	
0 0		SEMESTER – I			02
Course Coo		P21PH102 / 202 2:2:0	Credits: CIE Marks:		03
	lours/Week (L:T:P): ber of Teaching Hours:	40	SEE Marks:		<u>50</u> 50
	rning Objectives: This co	-			20
• Defi engi	ne the laws and principle neering field. lain the concepts and th	es of Physics used i	n the topics of the co		C
appl	ications relevant to engine	ering field.	-	-	-
	d a foundation in formulat	• •	-		- •
appi UNIT – I	ying the knowledge of Ma			ing and te	8 Hours
		Quantum Mecha			
-	theory of radiation: Pro liation formula (Qualitativ		Assumptions of Pla	anck's lav	w of radiation
velocity. Heisenberg [*] nucleus. Wave func Eigen value	s uncertainty principle ar tion: Statement, Physical s. Time-independent one	Broglie waveleng nd its illustration. A significance and pr dimensional Schrod	th using group pplication: Non-exis operties. Definitions inger's wave equation	for Eiger	electrons in the functions and eations: Particl
velocity. Heisenberg [*] nucleus. Wave func Eigen value in one dime	 Expression for deF s uncertainty principle ar tion: Statement, Physical s. Time-independent one nsional potential well – E umerical Problems. ➢ Chalk and talk; power ➢ Self-study componer Rayleigh-Jean's law, 	Broglie waveleng nd its illustration. A significance and pr dimensional Schrod xpression for Eigen r point presentation a nt: Concept of Blac Stefan-Boltzmann's	th using group pplication: Non-exis operties. Definitions inger's wave equation functions, Eigen valu and videos. ck body radiation sp law and their limits.	for Eiger for Eiger on. Applic ues and no	bity concept electrons in the functions and ations: Particle formalized way
velocity. Heisenberg [*] nucleus. Wave func Eigen value in one dime function -N	 Expression for definition of the suncertainty principle articles in the suncertainty principle articles. Time-independent one nsional potential well – Eumerical Problems. Chalk and talk; power Self-study componer Rayleigh-Jean's law, Practical Topics: Step 	Broglie waveleng nd its illustration. A significance and pr dimensional Schrod xpression for Eigen r point presentation a nt: Concept of Blac Stefan-Boltzmann's	th using group pplication: Non-exis operties. Definitions inger's wave equation functions, Eigen valu and videos. ck body radiation sp law and their limits. constant.	for Eiger for Eiger on. Applic ues and no	bity concept electrons in the functions and ations: Particle formalized wave

Pedagogy	 Chalk and talk; power point presentation and videos. Self-study component: Hooke's law and stress-strai superconductors in medicine (SQUIDS) Practical Topics: Uniform bending; Torsional pendulum 	
UNIT – III	Electrical Conductivity in Solids	8 Hours
Fermi energy Energy and	antum free electron theory – Assumptions, Fermi Dirac Statisty, Fermi temperature, Fermi velocity and Fermi factor. V temperature, Expression for density of states. Mention the exposity. Merits of quantum free-electron theory.	ariation of Fermi factor with
semiconduc for hole con Expression	ctors: Classification of Semiconductors, Fermi level tors. Expression for electron concentration in conduction bar necentration in valance band of an intrinsic semiconductor. for conductivity and resistivity of an intrinsic semiconductor merical Problems.	nd and Mention the expression Relation between E_F and E_g .
Pedagogy	 Chalk and talk; power point presentation and videos. Self-study component: Expressions for carrier conc resistivity in terms of energy gap of an intrinsic semicono. Practical Topics: Fermi energy, Energy gap of Characteristics. 	luctor.
UNIT – IV	Photonics	8 Hours
energy dens Construction cutting.	view of absorption, spontaneous and stimulated emission ity in terms of Einstein coefficients. Requisites and condition n and Working of CO ₂ Laser. Applications: Range finde	ons for laser action. Principle, er, data storage, welding and
Fractional i	cs: Propagation mechanism. Expression for angle of accept ndex change, V - number and number of modes. Types of for attenuation coefficient. Application: Telecommunication s	of optical fibres. Attenuation:
Pedagogy	 Chalk and talk; power point presentation and videos. Self-study component: Construction and working of H Optical fibre: Sensors. Practical Topics: Wavelength of LASER source by Newton's rings. 	
UNIT – V	Technical Acoustics	8 Hours
(Mention the Ultrasonics destructive restriction of the second se	ral Acoustics: Absorption, reverberation and time of reversession), Factors affecting acoustics of a building and the : Introduction, Principle, Measurement of ultrasonic velocity method of testing the materials.	eir remedies. 7 in liquids. Application: Non-
	es: Mach number and Mach angle, properties of shock wave k tube, characteristics of Reddy shock tube, applications	•

Pedag	 ogy > Chalk and talk; power point presentation and videos. > Self-study component: Basics of SHM; free, (Qualitative). > Practical Topics: Spring constant; Ultrasonic interference 	damped and f								
Course Outcomes: On completion of this course, students are able to:										
COs	Course Outcomes with <i>Action verbs</i> for the Course topics – <i>Quantum Mechanics, Properties of the Materials, Conductivity</i> <i>in Solids, Photonics and Technical Acoustics.</i>	Bloom's Taxonomy Level	Level Indicator							
CO1:	Recall the fundamental Definitions or Laws of physics relevant to Engineering field.	Remember	L1							
CO2:	Mention the various Properties and Applications by understanding the course topics pertaining to Engineering field.	Understanding	L2							
CO3:	Explain various Concepts and Principles used in the topics to understand the theory related to Engineering field.	Understanding	L2							
CO4:	Derive the expressions for the Physical Quantities on the topics of the course by applying the theory relevant to engineering field.	Applying	L3							
CO5:	Solve the numerical problems by applying proper solutions to verify the theoretical concepts related to engineering field.	Applying	L3							
Text B	Book(s):	· · · · ·								

- 1. Engineering Physics Wiley precise textbook series, Wiley India Pvt. Ltd, New Delhi.
- 2. R. K. Gaur, S. L. Gupta ; Engineering Physics Dhanpat Rai Publications; 2011 Edition
- 3. Hitendra K Malik, A K Singh; Engineering Physics Tata McGraw Hill Education; 2017

Reference Book(s):

- 1. S. O. Pillai: Solid State Physics, (New Revised Sixth Edition) New Age International (P) Limited, Publishers, New Delhi, 2009.
- 2. N. H. Ayachit, P. K. Mittal: Engineering Physics I. K. International Publishing House Pvt. Ltd. New Delhi, 2011.
- 3. M. N. Avadhanulu and P.G. Kshirsagar: Engineering Physics S Chand & Company Ltd., Ram Nagar, New Delhi, 2010.
- 4. D. Halliday, R. Resnick, and J. Walker: Fundamentals of Physics Wiley publications, 2017.

Web and Video link(s):

- 1. Quantum Mechanics: https://youtu.be/xlrvgLUsKqU
- 2. Lasers: https://youtu.be/Ab1nxxkgjH8
- 3. Fiber optics: https://youtu.be/9seDKvbaoHU

E-Books/Resources:

- http://de.physnet.net/PhysNet/education.html
- http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html

	Course Articulation Matrix [Engineering Physics - P21PH102 / 202]													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO-1	3	1												
CO-2	3	2												
CO-3	3	2												
CO-4	3	2												
CO-5	3	2												
	3 – HIGH, 2 – MEDIUM, 1 - LOW													

	EERING CHEMIST d Credit System (CBCS)		
- 1	SEMESTER – I / II		
Course Code:	P21CH102 / 202	Credits:	03
Teaching Hours/Week (L:T:P):	2:2:0	CIE Marks:	<u> </u>
Total Number of Teaching Hours:		SEE Marks:	50
Course Learning Objectives: The co			
• Impart the basic knowledge of energy storage devices and its	chemistry and its princip	les involved in electroc	hemistry
• Understand the basic principle technological importance	s of corrosion and its pre-	vention, metal finishing	and its
• Master the knowledge of synth like composites, lubricants, ce		ization of engineering m	naterials
• Apply the knowledge of Grand compounds. Understanding the	• • • •	1	chemica
• Understand the theory, basic p instruments.	rinciple and applications	of liquid crystals and A	nalytical
General Instructions:			
i. These are sample Strategies, wh various course outcomes.	nich teachers can use to a	ccelerate the attainment	of the
ii. Lecturer method (L) does not type of teaching methods may b	-		different
iii. Show Video/animation films to			
iv. Encourage collaborative (Group			
v. Ask at least three higher order thinking.			es critica
vi. Adopt Problem Based Learn develop thinkingskills such as t rather than simply recall it.vii. Topics will be introduced in a m	he ability to evaluate, ger	-	
vii. Topics will be introduced in a m viii. Show the different ways to solv		ancourage the students	to com
up with their own creative ways	1	encourage me suuellis	
ix. Discuss how every concept		real world - and wh	en that'
possible, it helps to improve th			en mat
	UNIT – I		8 Hours
Electrochemical energy and solar en			
Chemical energy: Fuels: Introduction fluidized bed catalytic cracking, knock biodiesel, power alcohol, octane and c	king(Petrol engine), mec		
		- England -1tu-1	4 1 · 1
Electrochemical energy : Introduct Assumption of Nernst equation for			
Introduction Construction	end annliastions of C	alamal alastrada Tar	

Electrochemical energy: Introduction, EMF of cell, Free Energy, electrode potential-Assumption of Nernst equation for emf of the cell with problems. Reference Electrodes: Introduction, Construction, working and applications of Calomel electrode, Ion selective electrodes-Glass electrode, determination of pH of an electrolyte and pK_a of an weak acid using Glass electrode.

Energy storage Systems: Battery technology: Introduction, Classification, characteristics,

construction, working and applications of Li-ion battery, Ni-MH battery, Silver oxide- Zinc battery.

Solar Energy: Introduction, construction, working and applications of photovoltaic cell.

Green fuel: Hydrogen-production by photo catalytic water splitting method, storage and applications of Hydrogen. Construction, working and applications of Methanol-Oxygen fuel cell (H_2SO_4 as electrolyte)

Pedagogy	Electrochemistry and energy systems-chalk and talk method, power point								
	presentation, Practical topic: Determination of pKa value of weak acid using								
	glass electrode.								
	Energy storage Systems-Power point presentation, YouTube videos for Li-								
	ion battery construction and working.								
	Self-study component: recycling of Lithium-ion batteries, Solar Energy and								
	types of fuel cells-you tube videos, chalk and talk method.								

Corrosion technology and it's control:

Introduction, Electrochemical theory of corrosion, Types of corrosion - Differential metal and differential aeration – (pitting and water line) caustic embritlement. Factors affecting the rate of corrosion: ratio of anodic to cathodic areas, nature of corrosion product, nature of metals, pH, conductivity and temperature. Corrosion control: Cathodic protection - sacrificial anode and impressed current methods, Metal coatings – Galvanization and tinning, Anodizing – Anodizing of aluminum, Organic coatings: Paint and varnishes. Numerical problems on weight loss method.

Metal finishing: Introduction, Technological importance. Principles of electroplating. Electroplating of chromium. Electro less plating: Introduction, electro less plating of nickel & copper on PCB with applications.

	UNIT – III	8 Hours	
	theirfunctions. Varnish, definition, differences between pain	ts and varnishes.	
	Self-study component: Organic coatings: Paint, compon	ents of paints and	
	Videos: Electroplating of chromium, electro less plating of 1	nickel & copper	
	corrosion control. Technological importance. Electroplating	: Introduction.	
	of corrosion, Factors affecting the rate of corrosion, Type	es of corrosion and	
Pedagogy	Chalk and talk method and power point presentation - Electronic e	ctrochemical theory	

Engineering Materials and Technology:

Composites: Introduction, constitution, classification. Types: Particle, fiber, fiber glass, hybrid and reinforced Composites with applications.

Lubricants: Introduction, Classifications, functions, Properties- Viscosity index, Flash point, oiliness, cloud point, ash point and applications of lubricants.

Cement: Types of cement, constituents, properties of cement. Determination of percentage of CaO in cement.

Polymers: Introduction, Synthesis and applications of Polyurethane, polycarbonates, araldite (Epoxy resin), Kevlar, butyl rubber, Thiokol.

Conducting Polymers: Synthesis & Mechanism of conduction in poly acetylene.

Biodegradable polymers: Introduction and their requirements. Synthesis and properties of Poly lactic acid. Applications of biodegradable polymers in medical industry.

Pedagogy	Chalk and talk method and power point presentation- Polymers, Conducting
	Polymers.

Self-study component: Lubricants. Determination of CaO in cement.

TINITT	TX 7	
UNIT	- I V	

8 Hours

Green Chemistry:

Introduction, definition, Major environmental pollutants, Basic principles of green chemistry. Various green chemical approaches – Microwave synthesis, Bio catalyzed reactions, Phase transfer catalysis.

Super critical conditions for solvent free reactions. Synthesis of typical organic compounds by conventional and green route i) Adipic acid ii) Paracetamol.

Atom economy – Synthesis of Ethylene oxide and Methyl Methacrylate. Industrial applications of green chemistry, Numerical problems on Atom economy.

Nano materials:

Introduction, size dependent properties (Surface area, Electrical, Optical, Catalytic and Thermal properties). Synthesis of nano materials: Top down and bottom up approaches, Synthesis by Sol-gel, precipitation and chemical vapour deposition, Nano scale materials: Fullerenes, Carbon nano tubes and graphenes – properties and applications.

	chemical vapour deposition. Self-study component: Atom economy. UNIT – V	8 Hours	
	Videos: Various green chemical approaches, Synthesis of down and bottom up approaches, Synthesis by Sol-§	-	
	size dependent properties of nanomaterials. Nanoscale Carbon nanotubes and graphenes – properties and applicat	ions.	
Pedagogy	Chalk and talk/power point presentation - Basic principle	es of green chemistry,	

Water technology:

Introduction, sources and impurities in water, portable water; meaning and specifications (as per WHO standards), Hardness of water, types, determination of hardness using EDTA titration, softening of hard water by ion- exchange process. Numerical problems on hardness of water. Biological oxygen demand (BOD) and Chemical Oxygen Demand (COD) with Numerical problems on COD. Determination of COD of industrial waste water. Purification of water for town supply.

Instrumental methods of analysis:

Introduction, Theory, Instrumentation and applications of colorimetry, Flame Photometry, Potentiometry, Conductometry.

Liquid Crystals: Introduction, Classification-Thermo-tropic and Lyo-tropic with example. Applications of liquid crystals in electronic and computer instruments and in medicine.

Electroluminescence: Definition, Electroluminescent colors for various colors, Preparation of LED, Synthesis of poly (p-phenylene vinylene) PPV and its applications.

Photoresist: Components, requirements, types of photo resist. Reactions in two components: positive and negative photoresist.

Pedagogy	 gogy Chalk and talk/power point presentation – principles of water technology. Instrumental methods of analysis and liquid crystals. Practical topic: Volumetric titrations, instrumental methods. Self-study component - definition of equivalent weight, acidity, basicity, primary and secondary standards. Requirement of a primary standard solution, units of standard solutions (normality, molarity, molality, mole fraction, ppm) 											
2. P.C. Jai	M.M, Jain and Jain. Engineering Chemistry, Khanna Publ n and Monica Jain, A test Book of Engineering Chemistry tions, New Delhi, 20th Edition, 2020.	,	ion, 2020.									
2020. 2. B. S. Ja Engined 3. F. W. E 4. B. K. S G.A. O RSC Pu Web links • http • http	a -A Text book of Engineering Chemistry, S Chand & Co i Prakash, R. Venugopal, Sivakumaraiah & Pushpa Iyeng ering Students", Subash Publications, Bangalore. 10th Ed fillmeyer, Text Book of Polymer Science, John Wiley & S harma- A text book of Industrial Chemistry. 15th Edition, zin & A.C. Arsenault, "Nanotechnology A Chemical App blishing, 5th Edition, 2020. and Video Lectures (e-Resources): s://www.youtube.com/watch?v=faESCxAWR9k s://www.youtube.com/watch?v=TBqXMWaxZYM&list=1	ar.,- "Chemistry ition, 2020. Sons, 15th Editic 2020. roach to Nanom	for on, 2020. aterials".									
 <u>http</u> <u>http</u> <u>http</u> <u>http</u> <u>http</u> 	https://www.youtube.com/watch?v=X9GHBdyYcyo https://www.youtube.com/watch?v=1xWBPZnEJk8											
COs Elect Gree	rse Outcomes with Action verbs for the Course topics – rochemical Energy, Corrosion, Properties of the Materials, n chemistry, Water technology, Liquid crystals, roluminiscence and Nano materials.	Bloom's Taxonomy Level	Level Indicator									
	ollect the fundamental Definitions or Laws of mistry relevant to Engineering field.	Remember	L1									
CO2: Disc	uss the various Properties and Applications by erstanding the course topics pertaining to Engineering	Understanding	L2									
-	ain various Concepts and Principles used in the sto understand the theory related to Engineering field.	Understanding	L2									
CO4: Desc	ribe the Synthesis and applications of materials in the	Applying	L2									

	topics to understand the theory related to Engineering field.	onderstanding	
CO4:	Describe the Synthesis and applications of materials in the	Applying	L2
	engineering field.		
CO5:	Solve the numerical problems by applying proper solutions to verify the theoretical concepts related to engineering.	Applying	L3

	Course Articulation Matrix [Engineering Chemistry - P21CH102 / 202]													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO-1	2	1												
CO-2	3	2												
CO-3	3	2												
CO-4	3	2												
CO-5	3	2												
			3 – HIGH, 2 – MEDIUM, 1 - LOW											

ENGINEERING MECHANICS

[As per Choice Based Credit System (CBCS) & OBE Scheme]

SEMESTER – I / II									
Course Code:	P21CV103 / 203	Credits:	03						
Teaching Hours/Week (L:T:P):	3:0:0	CIE Marks	: 50						
Total Number of Teaching Hours:	40	SEE Marks	50						
UNIT – I			8 Hours						

INTRODUCTION: Basic idealization of mechanics, particle, rigid body, mass, time, continuum, force, force system, system of units, principle of transmissibility of forces, principle of superposition.

COPLANAR CONCURRENT FORCE SYSTEM: Resultant of forces. Resolution of forces, Composition of coplanar concurrent, parallel and non-concurrent forces, Moment of a force, Varignon's theorem, free body diagram, equilibrant, equilibrium of particles and rigid bodies.

Self-Study Component: Application of triangle and polygon Law, vector method of resolution and Composition of forces.

UNIT – II	8 Hours

S

SUPPORT REACTIONS: Types of loads and types of supports, statically determinant beams, Numerical problems on support reactions for beams with point loads (normal and inclined), uniformly distributed load, uniformly varying load and moment.

FRICTION: Introduction, types of friction, laws of friction, angle of friction, angle of repose, cone of friction, characteristics of dry friction, application -body on horizontal plane and inclined plane and ladder friction.

Self-Study Component: Numerical problems on support reaction of beams loaded with trapezoidal loads, Support reactions for Compound beams and wedge friction - numerical problems.

UNIT – III	8 Hours						
CENTROID AND CENTRE OF GRAVITY: Introduction to centroid an	nd centre of gravity,						
Centroid of rectangular, triangular, circle, semicircle, quarter circle lamina	and sector from first						
principles. Numerical problems on Centroid of composite lamina.							
Self-Study Component: Determining Centroid for Composite Lamina with openings.							
UNIT – IV	8 Hours						
MOMENT OF INERTIA: Introduction, radius of gyration, parallel axis theorem, perpendicular axis							
theorem, polar moment of inertia, moment of inertia of standard geometry	rical figures by first						
principles. Numerical problems on moment of inertia of composite sections.							
Self-Study Component: Determining moment of Inertia of Composite section	ons with reference to						
given axis.							
	8 Hours						

centripetal and centrifugal forces, banking/super elevation.

Introduction to work, power and energy, impulse – numerical problems.

Self-Study Component: Concept of motion with varying acceleration. Collision of elastic bodies.

Course O	utcomes: On completion of this course, students are able to:								
CO – 1:	- 1: Apply the knowledge of basic science and mathematics to classify the force systems at Compute its resultant.								
CO – 2:	Analyse the system of forces in equilibrium with or without frictional forces.								
CO – 3:	Locate the centroid and composite moment of inertia of irregular and built up sections.								
CO – 4:	Analyse the problems with respect to linear motion, curvilinear motion and energy.								
Text Bool	k(s):								
 S.S Bhavikatti, A text on elements of Civil Engineering and mechanics, New age International publishers, 2015. R.S. Khurmi, A text book of engineering mechanics, S. CHAND & COMPANY LTD. 									
Reference	e Book(s):								
	rutham S: A text book of applied mechanics, Dhanpatrai and sons shekaran, G Shankar Subramanian: Engineering Mechanics- Statics and Dynamics, Vikas								

- S. Rajashekarah, O. Shankar Subramanian. Engineering recenting stretchartes states and Dy Publishing House 1999.
 Ferdinand Beer and Johnson F.R (Jr) Mechanics for Engineers, Tata Mc Graw-hill B
- Publishing comp. Ltd New Delhi.

	Course Articulation Matrix [Engineering Mechanics - P21CV103 / 203]													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO-1	3	2											3	1
CO-2	3	2											3	1
CO-3	2	2	1										2	
CO-4	3	2	2										3	1
	3 – HIGH, 2 – MEDIUM, 1 - LOW													

PROBLEM SO	OLVING THRO	UGH C	
[As per Choice Based Cre		& OBE Scheme]	
	1ESTER – I / II		02
Course Code:	P21CS103 / 203	Credits:	03
Teaching Hours/Week (L:T:P):	3:0:0	CIE Marks:	50
Total Number of Teaching Hours:	40	SEE Marks:	50
Course Learning Objectives:			
1. Compose step by step procedure/	flow diagram to solv	ve a given probler	n
2. Identify the appropriate data and	its type for the giver	n problem	
3. Apply programming constructs o	f C language to solve	e the real-world p	oroblem
4. Explore user-defined data stru	-	, structures and	pointers in
implementing solutions to the pro-			
5. Design and Develop solutions to		tions	
6. To process the large data stored i			
UNII			8 HOURS
Algorithms and Flowchart: Algorithms	s, Flowcharts, Writir	ng algorithm and	flowcharts for
simple exercises.			~
Overview of C: Basic structure of C	program, Variables	and Data Types	, Constants,
Operators and expressions.			
Self-Study Component: Execution of c		of Expression.	
UNIT		C	8 HOURS
Managing Input and Output Operatio	_		at a life alar
Decision making and Branching: Simp statement, switch statement.	ole il statement, il	else statement, ne	ested 11else
Decision making and looping: Whil	a statamant da st	atomant and for	statamont
unconditional branching: break, continue		atement and for	statement,
Self-Study Component: Formatted In		conditional bran	ching: Go To
statements, elseif ladder.	put and Output, un		ching. Go To
UNIT	ш		8 HOURS
Arrays: 1D- declaration and initialization		declaration and i	
2D arrays, operations on strings without	-		
Self-Study Component: Multi-dimension	-		ctions (strlen
strcpy, strrev, strcat, strcmp).	fondi milajs, sun	ing interior for	ourons (surron,
UNIT	IV		8 HOURS
User-defined Functions: Elements of		tions, categories	
parameter passing technique- call by value		e e	
Structures and Unions: Structure-D	•		cture variable.
accessing structure variables, structure	-	•	
union, declaring union variable, accessin	•	, -	8
Self-Study Component: passing arrays	-	ing string to fun	ctions, size of
structures, Bit fields.	· •	- 0	
structures, Bit fields.			

NEP I and II Semester Synabus [CBCS with OBE] w.e.1 2021-22 Academic Fear												- I cui		
					τ	JNIT	V						8 HOU	URS
Pointers: Understanding pointers, declaring pointer variables, initialization of pointer														
	Variables, accessing a variable through its pointers, pointer to an array.													
File M	File Management in C: Definition, Declaration, Operations on files.													
Self-Study Component: Operations on pointers, error handling during I/O operations.														
Course Outcomes:														
At the end of the course, the student will be able to:														
 CO1: Compose step by step procedure /flow diagram to solve a given problem CO2: Identify the right data types based on the requirements of the problem CO3: Apply suitable programming constructs of C language and/or suitable data structures to solve the given problem CO4: Analyse and Identify the errors in given code snippet and determine the output CO5: Design and develop solutions to problems using structured or modular programming concept 												ing		
Text H	Book(s	s):												
1	E B	alaour	uswan	nv Pro	ooram	ming	in AN	SIC '	7 th Edi	tion T	ata Mc	Graw-F	Hill 20	17
		-		•	-	-								
2.	V Ra	ijaram	an, Fu	indam	entals	of Co	mpute	ers, 6 th	Editio	on, PHI	Learni	ng Pvt.	Ltd, 20	015.
Refer	ence E	Book(s	s):											
1.	Reen	na Tha	areja, l	Progra	mmin	g in C	2. 2 nd E	Edition	. Oxfo	ord Uni	versity	Press.	2016.	
			•	-		-					•			
2.			outlin Iill Pu		-	-	g with	i C, I	3 yron	Gottfr	ried, 31	rdEditio	on, Ta	ta
Web a	nd V	idea li	nk(e)	,										
11002	inu V		un(5).	•										
1.	<u>https</u>	://npte	l.ac.in	/cours	es/106	5/105/	10610	<u>5171/</u>						
	Cou	rse Ar	ticula	tion N	Aatrix	x [Pro	blem	Solvin	g thro	ough C	- P210	CS103	/ 203]	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO-1	1	2	2									1		
CO 2	1	2							1			1		
CO-2		-										-		

3 - HIGH, 2 - MEDIUM, 1 - LOW

2

2

2

CO-3

CO-4

CO-5

2

2

2

3

1

1

1

ELEMENTS O	F MECHANICAL	ENGINEERIN	١G							
[As per Choice Based Credit System (CBCS) & OBE Scheme]										
	SEMESTER – I / I		0.2							
Course Code:	P21ME104 / 204		03							
Teaching Hours/Week (L:T:P):	2:2:0	CIE Marks:	50 50							
Total Number of Teaching Hours: Relevance of the course: This course	40	SEE Marks:								
engineering science to all the stude	-		e							
UNIT	`-I		8 HOURS							
Introduction: Role of mechanical eng	gineering science in	technology, def	initions with examples:							
Prime movers, Mechanisms, Machines	s, & Machine Tools.									
Source of Energy: Conventional (Fo	ossil fuels, hydel er	nergy) and Non	-Conventional (Solarflat							
plate collector, Wind, Tidal, Geotherm	al, Bio- gas and Nu	clear).								
Properties of steam: Formation of	steam with const	tant pressure, t	type and properties of							
steam-specific volume, internal energy	and dryness fraction	on (numerical pr	oblems).							
Self-Learning Component: Present en	ergy resources in l	ndia and its su	stainability,							
opportunities and obstacles to renewab	ble energy for the pro-	esent and future								
UNIT	-II		8 HOURS							
Energy Conversion Systems:										
Steam turbine: Introduction, classifi	cation, working pri	nciple of impul	se & reaction turbines.							
Gas turbine: Introduction, classifi	ication, working	principle of o	pen and closed type.							
Hydraulic turbine: Introduction, class	sification, working	principle of im	pulse (Pelton Wheel) &							
reaction (Francis) turbines.										
IC Engines: Classification, parts & i	its nomenclature, 4	stroke petrol a	nd diesel engines (P-V							
diagram of Otto & Diesel cycles), die		-	-							
performance parameters - indicated										
thermal efficiency, mechanical effi	ciency and specif	ïc fuel consu	mption Automobiles -							
Transmission systems, suspension syst	tem, E-Vehicles, Hy	brid vehicles.								
Self-Learning Component: Working	principle of MPFI	and CRDI syste	em							
UNIT	-III		8 HOURS							
Refrigeration & Air Conditioning	: Introduction, typ	es of refrigera	nts & their properties,							
working of vapour compression refrig	geration system, wi	ndow and split	air conditioners, simple							
numericals on COP of refrigerator.										
Power Transmission: Belt Drives: Fl	at belt drives-open	and cross (No d	erivation), slip & creep,							
velocity ratio, and idler pulley (No	numerical), Gear d	rives: Classific	ation of gears, velocity							
ratio for simple and compound gear tra	ains (No derivation a	and numerical).								

UNIT-IV	8 HOURS
Manufacturing Processes and Machine Tools:	- o no end
Castings processes: Patterns & moulding, hot working and cold working. M	etal forming
processes: Extrusion, drawing, rolling, forging, forging operations Metal Joining	-
Soldering, Brazing, Arc Welding & Gas Welding.	8
Machine Tools: Lathe: working principle, lathe specifications, operations - tu	rning, facing.
knurling, thread cutting, taper turning by swiveling of compound rest. Drilling	
working principle, operations- drilling, reaming, boring, counter boring, counter	
tapping.	8
Self-Learning Component: Super finishing operations- lapping and honing. UNIT-V	8 HOURS
Modern Manufacturing Technologies:	
Non-conventional manufacturing: Working principle and applications of ED	M. ECM and
WJM, Addictive manufacturing: Definition, classification, advantages and dis-adva	
of 3-D printing technology.	
Robotics: Introduction, joints and links, end effectors, common robot configura	tions:cartesian
cylindrical, polar and spherical coordinates. Sensors in robotics, applications of robot	
Automation: Introduction, types of Automation, Computer Numerical C	
machines: Basic elements of CNC, advantages and disadvantages.	
Self-Learning Component: Working principle of servo and stepper motors.	
Course Outcomes:	
At the end of the course, the student will be able to:	ndonstanding
CO1: Identify the basic concept and fundamentals of mechanical engineering and u of technical and operational features.	nderstanding
CO2: Describe the working principle of energy sources, energy conversion	and nowar
transmission systems in terms of societal and environmental aspects.	and power
CO3: Understand and Explain the conventional and non-conventional methods of	monufocturing
-	manuracturing
process. CO4: Identify various automation of manufacturing process encountered in enginee	ring prostico
CO4. Identify various automation of manufacturing process encountered in enginee	ning practice.
Text Book(s):	
1. Elements of Mechanical Engineering, K R Gopala Krishna, 30 th Edition	on, Subhas
Publications, 2015, ISBN 13-1234567153375	
2. Principles of modern manufacturing, Mikell P.Groover, SI Version, Wiley	India, 2018.
ISBN-108126573058	mara, 2010,
Reference Book(s):	
1. A text book of Elements of Mechanical Engineering, S Trymbaka M	urthy, I K
International Publishing House Pvt. Ltd , 2008, ISBN-3980578571 2 Pasia and applied Thermodynamics – P.K. Nag. 2 nd Edition 2017 Ma	Crow II:11
 Basic and applied Thermodynamics, P.K.Nag, 2nd Edition, 2017, Mc Education, ISBN-100070151318 	Graw Hill
3. Elements of Mechanical Engineering by K.P. Roy, S K Hajra Choudhury	, A K Hajra
Choudhury, Media Promoters, 2012.	
4 Elements of Machanical Engineering by P K Painut Firewall Media 2005	

4. Elements of Mechanical Engineering by R.K. Rajput, Firewall Media, 2005.

Web and Video link(s):

- 1. <u>https://www.youtube.com/watch?v=Zgp86PVXXuQ</u> (Energy resources)
- 2. <u>https://nptel.ac.in/courses/112/103/112103249/</u> (Hydraulic Machines)
- 3. <u>https://www.youtube.com/watch?v=c52hmb-IPJw</u> (Types of Boilers)
- 4. <u>https://nptel.ac.in/courses/112/103/112103262/</u> (I C Engine)
- 5. https://nptel.ac.in/courses/112/105/112105128/ (Refrigeration)
- 6. <u>https://nptel.ac.in/courses/116/102/116102012/</u> (Notes on Drives)
- 7. https://nptel.ac.in/courses/112/107/112107213/ (Manufacturing and Joining)
- 8. https://nptel.ac.in/courses/112/105/112105233/ (Metal forming Processes)
- 9. <u>https://nptel.ac.in/courses/112/105/112105211/</u> (CNC)
- 10. <u>https://nptel.ac.in/courses/112/105/112105249/</u> (Robotics)

Cou	Course Articulation Matrix [Elements of Mechanical Engineering - P21ME104 / 204]													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO-1	3	1	2			2	1					1		
CO-2	3	2	1			1								
CO-3	3	1	1											
CO-4	3		1		1							1		
	3 – HIGH, 2 – MEDIUM, 1 - LOW													

	ED ENGINEERING		
-	Credit System (CBCS) & CMESTER – I / II	OBE Scheme]	
Course Code:	P21MED104 / 204	Credits:	03
Teaching Hours/Week (L:T:P):	2:2:0	CIE Marks:	50
Total Number of Teaching Hours:	40	SEE Marks:	50
Relevance of the course: The course aim	ns at imparting the know		
imagination and visualization capacity of th		6 6	, 6
UNI	Г-І		4 HOURS
Orthographic Projections of Points: Intro using CAD software, principles of orthog quadrants.	Ũ		
UNI	Г-Ш		6 HOURS
Orthographic Projections of Lines: P projection, true and apparent lengths, true a		-	-
UNIT	`-III		8 HOURS
Orthographic Projections of Plane Surf circular plates resting on HP in different pos	• •	• • •	on, hexagon and
UNIT	-IV		12 HOURS
Projections of Solids: Projections of hexa resting on HP.	hedron, right regular pri	sms, cylinders, p	yramidsand cones
UNI	ſ-V		10 HOURS
Isometric Projections: Introduction to is	ometric scale, i sometric	projection of cu	be, rightregular
prisms, pyramids, cylinders, cones, sphere	s, cut spheres, frustums	of cones and py	ramids in simple
positions, combination of solids (Maximum	of two solids).		
Course Outcomes:			
 At the end of the course, the student will b CO1: Understand basics of engineering geometries. CO2: Recognize the location of the ob orthographic views. CO3: Create simple two dimensional of dimensions. CO4: Draw the isometric projection of reg Text Book(s): 	g graphics and use of co oject with respect to th objects, draw their orth	e reference plan	nes and draw its
1 Engineering Graphics, K.R. Gopal	akrishna Subhas Dublicad	ions Bangalora ?	2 nd edition
2005, ISBN: 5551234018854.	akrisinia, Suonas i uonea	Jons Dangalore, J	2 Guitton,
2 Engineering Drawing, N.D. Bhatt a Gujarat, 48 th edition, 2005, ISBN:		r Publishing Hous	se,
Reference Book(s):			
1 Computer Aided Engineering		•	
Publishing House Pvt. Ltd., 9788188237944.			
2 Fundamentals of Engineering D Graphics for Design and Producti of India Pvt. Ltd., Eastern Econo	on, Luzadder Warren J.,	Duff John M., Pr	·

A. Evaluation Scheme															
Sche	me	We	ightag	e	Ma	rks		Event Break Up							
CIF	CIE 50% 50 Test Submission										n				
Unit I & II to be evaluated only through CIE									20				30		
SE	E		50%		5()%	(Questions to be Set: Quest)uestio	ions to Answer: 03				
				Sch	eme f	or Ser	nester	r End	Exam	inatior	ı				
One out	of two	Ques	tions f	rom ui	nit III							15 M	arks		
One out	of two	Ques	tions f	rom ui	nit IV							20 M	arks		
One out	of two	Ques	tions f	rom ui	nit V							15 M	arks		
				Γ	otal						50 Marks				
Cours	e Arti	culatio	on Ma	trix	Comp	outer-	Aided	Engi	neerir	ng Dra	wing -	P21MI	ED104	/ 204]	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO-1	3	3	1		3					3					
CO-2	3	3	1		3					3					
CO-3	3	3	2		3					3					
CO-4	3	3	2		3					3					
	3 – HIGH, 2 – MEDIUM, 1 - LOW														

SEMESTER – I / II							
Course Code:	P21EE105 / 205	Credits:	03				
Teaching Hours/Week (L:T:P):	2:2:0	CIE Marks:	50				
Total Number of Teaching Hours:	40	SEE Marks:	50				
Course Learning Objectives. This as	una will anable students	ta					

Course Learning Objectives: This course will enable students to:

• Analyze the basic concepts of single phase and three phase AC circuits.

- Describe the working of DC & AC Machines.
- Discuss the concept of Green energy & Power system

1	0,	5	
	UNIT – I		8 Hours
		a • •	

Single Phase AC circuits

Generation of sinusoidal AC voltage, Definition of Average value, RMS value, Form factor and Peak factor of sinusoidally varying voltage and current, meaning of lagging and leading of sinusoidal wave, Real power, Reactive power, Apparent power and Power factor, Analysis of RL, RC & RLC series circuits & problems, parallel circuits (only problems)

Self-Study Component: Analysis of series - parallel circuits

UNIT – II	8 Hours
DC Generator & Motors	

DC Generator: Working principle of DC machine as generator and motor, constructional features, EMF equation of generator, types of armature winding, types of DC generators, problems on EMF equation.

DC Motor: Back EMF and its significance, types of DC motors, torque equation of DC motor and numerical problems, Applications of DC Motors

Self-Study Component: Construction & Working of Special motors

UNIT – III	8 Hours
Three Phase AC circuits & Induction motors	

Three Phase AC circuits: EMF Generation, Necessity and advantages of three phase system, Phase sequence, balanced supply and load, relationship between line and phase values for balanced star and delta connections

Induction motors: Concept of rotating magnetic field, principle of operation, types and constructional features, Slip and its significance, Illustrative examples

Self-Study Component: Measurement of 3-Phase power by Two wattmeter method

UNIT – IV	8 Hours
Transformer & Alternator	

Transformers: Principle of operation and construction of single phase transformers (core and shell type), EMF equation, power losses, efficiency, illustrative problems on EMF equation and efficiency only.

Synchronous Generators: Principle of operation, Types and constructional features, EMF equation numerical problems of emf equation

Self-Study Component: Regulation of Transformer & winding factors of alternators

	UNIT – V	8 Hours
	Green Energy & Basics of Power systems	
Green En system.	ergy: Concept of renewable energy sources, Types, working of solar and v	wind energy
Safety & I Earthing: 1	stem: Introduction, Single Line Diagram of AC Power Transmission Syster Protection: Electric shock & Precautions, HRC Fuse, circuit breaker & its t necessity & working of pipe earthing y Component: Working of Biomass energy source	
Course O	utcomes: On completion of this course, students are able to:	
CO – 1:	Analysis of single phase AC circuits.	
CO – 2:	Illustrate the working DC Machine as a Generator and Motor	
CO – 3:	Analyze the three phase AC circuits and explain the working of	three phas
	induction motor.	
CO – 4:	Discuss the working of transformer and alternator.	
CO – 5:	Describe the concept of green energy and basics of power systems.	
Text Bool	κ(s):	
2. G.I	V Rao, "Basic Electrical Engineering", Publisher: Subhas Stores, 2015 D. Rai, Non-Conventional Energy Sources, Khanna publishers, ISBN: 9 3-7	78-81-7409
Reference	e Book(s):	
	M. Chandrashekaraiah , "Basic electrical Engineering", New Edition blications	, Rajeswar
2. B.I	L. Theraja, A.K. Theraja A Textbook of Electrical Technology, Vol. 2, 23 blisher: S Chand & Co Ltd	rd Edition,
Web and	Video link(s): Basic Electrical Technology	
1. htt	ps://nptel.ac.in/courses/108/108/108076/	

	COURSE ARTICULATION MATRIX [Basic Electrical Engineering - P21EE105 / 205]													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO-1	2	1						2	1	3			2	1
CO-2	2	1						2	1	3			2	1
CO-3	2	1						2	1	3			2	1
CO-4	2	1						2	1	3			2	1
CO-5	2	1						2	1	3			2	1

Basic Electronic Devi						
As per Choice Based Credit Syster SEMESTE		E Scheme]				
Course Code:	P21EC105 / 205	Credits:	03			
Teaching Hours/Week (L:T:P):	2:2:0	CIE Marks:	50			
Total Number of Teaching Hours:	40	SEE Marks:	50			
Course Learning Objectives: This course will en	able students to:					
1. Understand the principles and operation of sem	iconductor device	es, circuits and				
communication system.						
2. Analyze the circuits by applying the knowledge	e of devices and c	ircuits.				
3. Design primitive analog and digital circuits.						
UNIT – I		8	8 Hours			
Diode Applications: Introduction, Load-line an	-	-				
and series – parallel configurations, Sinusoidal	inputs Half Wave	e Rectification, I	Full wave			
rectification, Zener diodes.						
Power Supplies : Introduction, General filter cons	siderations, Capac	citor filter.				
T + 1 - 2 + 2 + 2 + 2 + 2 + 1 + 1 + 1 + 1 + 2 + 2						
Text 1: 2.1 to 2.4, 2.6, 2.7, 2.11, 15.1 to 15.3.						
Self-Study Component: Other diode applications	s like Clipper and	clamper circuits				
UNIT – II	s like elipper and	-	8 Hours			
Field-Effect Transistors: Depletion-Type MOSF	ET. Enhancemen					
FET Biasing (Only voltage divider method): Dep		• •				
MOSFET.	7 1	,	51			
FET Amplifiers: Depletion-Type MOSFET, En	nhancement-Type	MOSFET, E-M	IOSFET			
Voltage divider configuration.						
Feedback and Oscillator Circuits: Feedb	oack Amplifier-	–Phase and H	Frequency			
Considerations						
Text 1: 6.7, 6.8, 7.7, 7.8, 8.8, 8.9, 8.11, 14.4.						
Self-Study Component: LC Tank circuit, Hartley	y, Colpitts and RC	-				
UNIT – III			B Hours			
Operational Amplifiers : Introduction, Op-A	mp Basics, Pra	ctical Op-Amp	Circuits,			
Differential and Common-Mode Operation.	lion Voltors	mmina Valte	Duffer			
Op-Amp Applications : Constant-Gain Multiplier, Voltage Summing, Voltage Buffer,						
Controlled Sources, Instrumentation Circuits (Instrumentation Amplifier Only), Active Filters (First order LPF and HPF Filters).						
Text 1: 10.1, 10.4, 10.5, 10.9, 11.1 to 11.6.						
Self-Study Component: Opamp precision rectified	ers					

	UNIT – IV	8 Hours				
0	gic: Switching and Logic levels, Digital Waveforms, Logic gates.					
-	lectronics: Introduction, Number Systems, Boolean Algebra Theorem	rems, Example				
	national Circuits,					
Boolean algebra and Combinational Circuit: Binary number systems, Number						
	n, Binary Arithmetic, Signed Numbers, Hexadecimal Num	•				
Hexadecii	nal to Binary and Binary to Hexadecimal conversion, Hexadecim	al Arithmetic,				
Algebraic	simplification, NAND and NOR Implementation					
Text 2: 9.5 11.8.	2, 9.3, 9.5, 10.1, 10.2, 10.3, 10.4.2, 11.2, 11.2.1, 11.2.2, 11.2.3, 11.4, 11.4	.1, 11.4.2, 11.7,				
Self-Stud	y Component: Encoder/Decoder, Mux/DeMux and Flipflops.					
	UNIT – V	8 Hours				
Commun	ication Engineering: Introduction, Elements of Communica	tion Systems,				
Transmitte systems, Transmiss of operation Text 2: 1 18.13, 18.	on, Amplitude modulation, Frequency (FM) and Phase (PM) er, Digital communication, Multiplexing, Pulse demodulation, Data transmission, Digital modulation, Multiplexing and ion lines, Radio waves, Antennas, Television, Satellite Communication of Mobile Phone, Microwave Communication, Optical fibre comm 8.1, 18.2, 18.3, 18.3.1, 18.3.3, 18.4, 18.6, 18.7, 18.8, 18.9, 18.10, 14, 18.15, 18.16, 18.17, 18.18, 18.21, 18.22. y Component: GSM, GPS	The telephone multi access, ation, Principle nunication.				
Course O	utcomes: On completion of this course, students are able to:					
CO #	Course Outcome	Program				
	course outcome	Outcome				
		Addressed				
		(PO#) with BTL				
CO – 1:	Apply the knowledge of physics and mathematics to understand the principle of devices, number system, circuits and communication system.	PO1[L1,L2]				
CO – 2:	Analyze the analog and digital circuits.	PO2[L3]				
CO – 3:	Design circuits for rectification, regulation, amplification and filtering.	PO2,PO3[L3,				
		L4],				
CO – 4:	Design the combination logic circuit.	PO2,PO3[L3, L4],				
Text Bool	x(s):					
1. El	ectronic Devices and Circuit Theory, 11e, by Robert Boylestad and L y, PHI, 2015. ISBN: 978-93-325-4260-0	ouis				
· ·J	· · ·					

2. Basic Electronics, D P Kothari, I J Nagrath, McGraw Hill Education, 2014. ISBN: 978-93-329-0158-2

Reference Book(s):

- 4. Electronic Devices & Circuits, 5e, by David A Bell, Oxford University Press. ISBN: 978-01-956-9340-9
- 5. Electronic Principles, 7e, by Albert Malvino and David J. Bates, Mcgraw Hill Education. ISBN: 978-00-706-3424-4
- 6. Digital Principles & Applications, 8e, Albert Paul Malvino, Donald P Leach, Goutam Saha, Mcgraw Hill Education. ISBN: 9789339203405
- 7. Kennedys Electronic Communication Systems, 6e, George Kennedy, Bernard Davis, Srm Prasanna, Mcgraw Hill Education, ISBN: 9789352606603

Web and Video link(s):

4. https://nptel.ac.in/courses/108/101/108101091/

COUR	COURSE ARTICULATION MATRIX (Basic Electronic Devices and Circuits - P21EC105 / 205)													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO-1	3												3	
CO-2		2												2
CO-3		2	2											2
CO-4		2	2											2

BAS	SIC MECHAN	ICAL E	NGINEERING SCIENCE	E LABORA'	ΓORY
	[As per C	hoice Base	d Credit System (CBCS) & OBE SEMESTER – I/II	[Scheme]	
Course Code	2:		P21MEL106 / 206	Credits:	01
Teaching Ho	ours/Week (L:T:	P):	0:0:2	CIE Marks	: 50
Total Numb	er of Teaching H	ours:	26	SEE Marks	: 50
fabrication te	chniques, characte	eristics of f	ns at making the students to us uels and to provide basic knowle esthetic skills for students.		
		PA	RT – A		12 Hours
1. Metal joini	ing processes – so	ldering, bra	azing and welding.		3hrs
2. Determinat	tion of flash and f	ire point of	lubricating oils.		2hrs
3. Demonstra	ation on lathe mil	ling, drillin	g, grinding and CNC Machine t	ools.	3hrs
	tion on fitting and	~~ ~	ethods.		2hrs
5. Study of fo	our wheeler chassi	s layout.			2hrs
		PA	RT – B		14 Hours
	animeter to calcul		o i		2hrs
2. Calibration	n of pressure gaug	ge and therr	nocouple		3hrs
5. Hands on	training on co-or	dinate syste	em of robots.		3hrs
4. Hands on	training on sensir	ng and actua	ation system in robots.		3hrs
5. Study of	dismantle and ass	embling of	petrol and diesel engines		3hrs
Course Outo	omes: On comple	etion of this	s course, students are able to:		
1. Learn	the concepts of me	etal joining	process, calibration of thermoco	uple and press	ure gauge.
			points, measure area of irregula		-
	-	-	of engines and working of conver		
		÷	aining to evaluate applications o	f robots and its	features.
(-)) / Reference Boo	()	Choudhry, Media promoters a	nd publishers	nut 1td 2010
	978-8185099156.	01 <i>2</i> , 11aj1a	choudiny, wiedla promoters a	ind publishers	pvi. Itd., 2010,
		ell Grover.	Mitchel weiss, Roger nagel M	IcGraw Hill20	12.India .2 nd
	ISBN-13:978007				, ,
			eering Science, K.R. Gopalakris 9789383214075.	shna, Subhash	Publications,
		Α.	Evaluation Scheme		
Scheme	Weightage	Marks	Event B	-	
CIE	50 %	50	20 Test	Record 30	
SEE	50 %	50	20	30	
			r Semester End Examination		
Part –A				20 N	Iarks
Part -B				20 N	Iarks
Viva – Voice				10 N	Iarks
Total				50 N	

Со	Course Articulation Matrix (Basic Mechanical Engineering Science Laboratory -P21MEL106 / 206)													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO-1	2													
CO-2	1						1							
CO-3	2								2				1	1
CO-4	2				2				2			1	1	1

	AMMING LABOR d Credit System (CBCS)		
Course Code:	SEMESTER – I/II P21CSL106 / 206	Credits:	01
Teaching Hours/Week (L: T: P):	0:0:2	CIE Marks:	50
Total Number of Teaching Hours:	26 Hrs	SEE Marks:	50
OBJECTIVES	F 1 1 (A 1 : 41		
1. To design the given problem using 1	•	tale of C lan ave as	
2. To introduce students to the basic k	-		
 To impart writing skill of C program To apply the concepts like looping, Problem. 	•	• •	
Tiobeni.	Programs List		
1 A Person invest Rs.1000.00 i	8	elding 5% interest	Assuming al
interest is left on deposit in the	••••	0	0
account at the end of each yea		-	•
these amounts	a for it years, ese the f	iono wing formata for	
$a=p(1+r)^n$ where			
p→Principal (original amo	ount invested)		
$r \rightarrow$ the annual interest rate			
$n \rightarrow number of years$	1 . c th		
a→amount on deposit at the end 2 Create a BMI(Body mass Inde		n waight in ka & hai	aht in motor
then calculate & displays the	-		-
following information [BMI =w	2	an application should	i uispiay ii
BMI Values:	(ergnt(kg)/nergnt (m)]		
Under weight: less than 18.5			
Normal:18.5 to 24.9			
Over weight: 25 to 29.9			
Obese: 30 or greater			
3 Write a program that will help	an elementary school s	tudent to learn multir	olication. Us
the rand() to produce two post	•	1	
the user with a question, such as		1 0	
How much is 6 times	7?		
The student then inputs the ans	swer. Next, the program	n checks the student's	answer. If
is correct, display the message	"Very good!" and ask	another multiplication	on question.]
the answer is wrong, display th	e message "No. Please	e try again" and let the	ne student tr
the same question repeatedly un	til the student finally ge	ets it right.	
4 Write a Program to read name a	and grade of n students.	. Display the number	of students
who received each grade (both	lower- & upper-case l	etters are allowed). C	Check for the
validity of grades(S, A, B, C, D			
5 Write a program to find the value 0.1		x varies from -3 to +3	3 in step o

6	Write a program to evaluate the following series up to given accuracy
0	Write a program to evaluate the following series up to given accuracy \mathbf{v}
	$e^{X} = 1 + x/1! + x2/2! + \dots$
7	Write a program to read a sentence & replace every character by next character in the
	alphabet set [z/Z by a/A]
8	Write a program that uses 2D array to store daily maximum temperature of four different
	cities and print the average weekly temperature of each city.
9	Write a program to check whether the given n numbers are sorted or not. If not sorted,
	call the function by name BUBBLE_SORT to sort the elements.
10	Create a structure called complex with data member as real and imaginary. Write a
	program to perform addition and multiplication of two complex numbers.
11	Write a program to store n integer data in a file and find their sum. Write the sum to
	another file
12	Write a program to find the sum of all the element of an array using pointers
Cour	rse outcomes
At th	e end of the course, the student will be able to:
1.	Apply knowledge of C constructs to design and develop programs/applications
2	. Conduct practical experiments for demonstrating features of C using Turbo C.
Text	Book(s):

1. E. Balaguruswamy, Programming in ANSI C, 7th Edition, Tata McGraw-Hill

Reference Book(s):

1. Reema Thareja, Programming in C, Oxford University Press

COURSE ARTICULATION MATRIX [C Programming Laboratory - P21CSL106/206]														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO-1	2	2	2					1	1			1		
CO-2	2	2	2		2			1	1			1		

EN	GINEERING PHY	SICS LABORAT	ORY						
[As per	Choice Based Credit S SEMEST		[Scheme]						
Course Code:		P21PHL107 / 207	Credits:	01					
Teaching Hours/Wee	ek (L:T:P):	0:0:2	CIE Marks	: 50					
Total Number of Tea	aching Hours:	26	SEE Marks	: 50					
Course Learning Ob	jectives: This course wi	ll enable students to:		·					
• Identify the laws of	r principles of physics of	n which the experiment	nts are working	ng relative					
to engineering field	1.								
• Setup the experime	ent or construct the circu	it to perform the expe	riments perta	ining to					
engineering application	ations.								
• Apply the knowle	edge of mathematical	science to calculate	or analyse	the results					
correlated with the	ory pertaining to engine	ering field.							
PART – A	PART – ANon-Circuit Experiments12 Hours								
1. Newton's ring -	Determination of wave	length of the given i	nonochroma	tic source					
using plano-conve	ex lens.								
2. Uniform bending	g - Determination of the	e Young's modulus of	the given m	aterial by					
uniform bending r	nethod.								
3. Diffraction gratin	ng - Determination of wa	avelength of the given	LASER sour	ce.					
4. Torsional pendu	lum - Determination of	f rigidity modulus of	the given n	naterial by					
torsional pendulur									
	- Determination of sprin	g constant and verific	ation of sprin	g constant					
in series and paral	lel combination.								
-	Determination of accept	ance angle and nume	erical apertur	e of given					
optical fibre.	Γ								
PART – B		it Experiments		12 Hours					
	v the output characteristi		E-mode and l	nence find					
output resistance,	current gain and current	amplification factor.							
8. Dielectric consta	nt - Determination of	the dielectric constan	t of the mat	erial of a					
	ging and discharging me								
	etermination of the Ferr	ni energy and Fermi to	emperature of	f a given					
metallic coil.	- th								
•	ification of Stefan's 4 th p								
	t - Determination of way	velengths of different	LED's and es	stimation					
of Planck's consta									
	ircuit - Determination of	of self inductance of a	given coil by	series and					
parallel resonance				[
PART – C	_	nded Experiments		2 Hours					
	rferometer - Determ	ination of velocity	of ultrase	onics and					
compressibility of	• •								
	Determination of energy	y gap of a given semic	conductor by	four probe					
method.									

Course Outcomes: On completion of this course, students are able to:								
COs	Course Outcomes with <i>Action verbs</i> for the Engineering Physics Laboratory Course – Experiments related to the theory Course.	Bloom's Taxonomy Level	Level Indicator					
CO1:	Recall the laws or Principles of Physics on which the Experiments are working related to engineering field.	Remember	L1					
CO2:	Develop the practical knowledge to setup the experiments related to Engineering field.	Understanding	L2					
CO3:	Construct the circuits to perform the experiments pertaining to Engineering applications.	Understanding	L2					
CO4:	Identify the proper instruments or tools by knowing their concepts of working to take accurate readings.	Understanding	L2					
CO5:	Apply the knowledge of mathematics to calculate/ analyse the results in correlation with the theory.	Applying	L3					
Text F	look(s).							

- Text Book(s):
 - 1. S. L. Gupta and Dr. V. Kumar, "Practical physics with viva-voce", Pragati Prakashan Publishers, Revised Edition, 2009
 - 2. S. K. Gupta, "Engineering physics practicals", Krishna Prakashan Pvt. Ltd., 2014

Reference Book(s):

- 1. P. R. Sasikumar "Practical Physics", PHI Ltd., 2011.
- 2. C.L. Arora, Practical physics, S. Chand Publication.
- 3. B.L. Worsnop and H. T. Flint, Advanced Practical Physics, Asia Publishing House.

Web and Video link(s):

1. <u>https://drive.google.com/file/d/1HRgO_thOLs8CbT9WSIW-5HHpg_64Iy5E/view?usp=sharing</u>

COURSE ARTICULATION MATRIX [Engineering Physics Laboratory - P21PHL107 / 207]

										1	1			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO-1	2	1							1					
CO-2	3	1							1					
CO-3	3	1							1					
CO-4	3	2							1					
CO-5	3	2							1					
	3 – HIGH, 2 – MEDIUM, 1 - LOW													

	ENGINEERIN	IG CHEMISTRY LABORA	ATORY							
	[As per Choice Ba	sed Credit System (CBCS) & OBI	E Scheme]							
~	~ .	SEMESTER – I/II								
	e Code	P21CHL107 / 207	Credits	01						
Teach	ing Hours/Week (L:T:P)	0:0:2	CIE Marks	50						
Total 1	number of teaching Hours	26	SEE Marks	50						
•]	competence.	developing experimental skills erials by volumetric analysis.	in building	technical						
Sl.										
No.	Instrumentation Experiments Potentiometric estimation of FAS using standard potassium dichromate solution.									
1	i otentiometric estimation of FAS using standard potassium dichiomate solution.									
2	Estimation of acid mixture by Conductometric method.									
3	Determination of viscos viscometer.	ity coefficient of an organic l	iquid using C	Ostwald's						
4	Determination of concentr	ration of copper by colorimetric me	ethod.							
5	Determination of pKa val	ue of a given weak acid using pH	meter.							
		PART- B Volumetric experiments								
1		al Oxygen Demand (COD) of ind								
2	Estimation of % of iro dichromate solution.	n in the given rust solution u	ising standard po	otassium						
3		pper in brass using standard sodiu	-	lution.						
4	Estimation of Total hardn	ess of water by EDTA complex-n	netric method.							
5	Estimation of CaO in cem	ent solution by rapid EDTA meth	nod.							

	Demonstration Experiments						
1	Flame photometric estimation of Sodium & Potassium.						
2	Determination of dissolved oxygen in water by Winkler method.						
Course outcomes: On completion of this course, student are able to:							
CO-1 Determine the pKa value of weak acid and coefficient of Viscosity of a given organic liquid.							
CO-2	Estimate the amount of substance present in the given solution using PotentiometerConductometric and Colorimetric analysis						
CO-3	Determine the total hardness and chemical oxygen demand in the given water sample byvolumetric analysis method						
CO-4	Determine the percentage of CaO, Copper and Iron in the given analyte solution by titration method.						
CO5	Demonstrate flame photometric estimation of sodium & potassium and Determination of dissolved oxygen in water by Winkler method.						

Text Books:

- 1. Vogel's A.I. A text book of quantitative analysis, 45th edition, 2020.
- 2. Willard, Merit, Dean and Settle, A text book of Instrumental analysis, 10th edition 2020.

Reference books:

- 1. G.H Jeffery, J Bassett, J Mendham and R.C. Denney Vogel's A.I. A text book of quantitative analysis, Dorling Kindersley (India) Pvt., Ltd. 45th edition, 2020.
- 2. Gary D Christian, Analytical Chemistry, Wiley India, 12th edition, 2020.

Course Learning Objectives: This course will enable students to:

- Identify the laws or principles of Chemistry on which the experiments are working relative to engineering field.
- Setup the experiment or preparation of solutions to perform the experiments pertaining toengineering applications.
- Apply the knowledge of Chemical science to calculate the results Correlated with theory pertaining to engineering field.

Course Outcomes: On completion of this course, students are able to:

course outcomes: on completion of this course, students are use to.					
COs	Course Outcomes with <i>Action verbs</i> for the Engineering Chemistry Laboratory Course – Experiments related to the theory.	Bloom's Taxonomy Level	Level Indicator		
CO1:	Recall the Principles of Chemistry on which the Experiments are working related to engineering field.	Remember	L1		
CO2:	Develop the practical knowledge to setup the Experiments related to Engineering field.	Understanding	L2		
CO3:	Preparation of standard solutions to perform the experiments pertaining to Engineering applications.	Understanding	L2		
CO4:	Identify the proper instruments or glassware's by knowing their concepts and working principles to take accurateresults.		L2		
CO5:	Apply the knowledge of Chemistry to calculate/ analyze the results in correlation with the theory.	Applying	L3		

COURSE ARTICULATION MATRIX [Engineering Chemistry Laboratory - P21CHL107/207]														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO-1	2	1							1					
CO-2	3	1							1					
CO-3	3	1							1					
CO-4	3	2							1					
CO-5	3	2							1					
3 – HIGH, 2 – MEDIUM, 1 - LOW														

HEALTH AND WELLNESS

[As per Choice Based Credit System (CBCS) & OBE Scheme]

SEMESTER – I/II						
Course Code:	P21AEC109A / 209A	Credits:	01			
Teaching Hours/Week (L:T:P):	0:2:0	CIE Marks:	50			
Total Number of Teaching Hours:	14	SEE Marks:	50			

Course Learning Objectives: This course will enable students to:

- To know about Health and wellness (and its Beliefs)
- To acquire Good Health & It's balance for positive mind-set
- To Build the healthy lifestyles for good health for their better future
- To Create of Healthy and caring relationships to meet the requirements of MNC and LPG world To learn about Avoiding risks and harmful habits in their campus and outside the campus for their bright future
- To Prevent and fight against harmful diseases for good health through positive mindset.

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teacher can use to accelerate the attainment of the various course outcomes.

- Teachers shall adopt suitable pedagogy for effective teaching learning process. The pedagogy shall involve the combination of different methodologies which suit modern technological tools and software's to meet the present requirements of the Global employment market.
 - **i.** Direct instructional method (Low /Old Technology),
 - **ii.** Flipped classrooms (High/advanced Technological tools),
 - **iii.** Blended learning (combination of both),
 - **iv.** Enquiry and evaluation based learning,
 - v. Personalized learning,
 - vi. Problems based learning through discussion,
 - vii. Following the method of expeditionary learning Tools and techniques,
- Apart from conventional lecture methods, various types of innovative teaching techniques through videos, animation films may be adapted so that the delivered lesson can progress the students In theoretical applied and practical skills in teaching of the concepts of Health and Wellness in general.

UNIT – I	INTRODUCTION	5 Hours					
1. Meaning, Definition and dimensions of Health and Wellness (WHO/Yoga)							
2. Factors affecting Fitness and Wellness							
3. Role of Fitness	3. Role of Fitness in maintaining Health and Wellness						
4. Importance of	Health Education and Wellness						
UNIT – II	Methods to Maintain Health and Wellness	5 Hours					
1. Role of Physical Activities and Recreational Games for Health and Wellness							
2. Role of Yogasanas and Meditation in maintaining Health and Wellness							
3. Nutrition for H	3 Nutrition for Health & Wellness						

UNIT – III	Anxiety, Stress and Aging	4 Hours
1. Meaning of Ar	nxiety, Stress and Aging	
2. Types and Cau	ises of Stress	
3. Stress relief the	rough Exercise and Yoga	
CO 1: To understand I CO 2: To acquire Goo CO 3: To inculcate and CO 4: To adopt the in their campus & outsid CO 5: To positively mindset.	fight against harmful diseases for good health through	
Text Book(s) / Refere	ence Book(s):	
Association dr	Health related Physical Fitness Test Manual." 1980 Publive Reston Virginia	-
Mosby Co.)	(979) foundation of Physical Education (5th edition Mis ra S.S (2005) "Health and Physical Education" New Delhi	
Publication	Ta S.S (2005) Health and Physical Education New Denni	. Suljeet
4. Thomas D Fah Publishers, 200	ey and others. Fit and well : 6th Edition New York : McGr 05	aw Hill
	2006) SwasthyaShiksha sports Publications Delhi.	
	&Gautam G P (2008) Health and Physical Education.	Friends
Publication Ne	ew Delhi I Roshan Kumar (2021) "Introduction to Physical Education	n" Louis
Publication. M		, Louis
8. Shanti K Y (19	087) "The Science of Yogic Breathier" (Pranayama) D B Be 007) "An Introduction to Sports and Physical Education" Pl	•
10. Pinto John	and Ramachandra K (2021) Kannada anadaParichaya" Louis publications. Mangalore	Version
Assessment Details (I	both CIE and SEE)	
	ontinuous Internal Evaluation (CIE) is 50% and for Sen The student has to obtain a minimum of 40% of maximum	
Continuous Internal	Evaluation:	
	sts each of 40 Marks (duration 01 hours) (All tests are simil .e. question paper pattern is MCQ)	ar to the
-	nts each of 10 Marks.	
• At the end of the	he Semester, Two Unit Tests and assignments average mar CIE i.e. for 50 Marks.	ks will be
Semester End Exam	(SEE):	
• SEE is conduct questions of	cted for 50 marks (1-hour duration). SEE paper will be each of 02 marks. The pattern of the question paper is I for SEE is 01 hour.	

ECOLOY A	ND ENVIRONMENT		
[As per Choice Based Cre	edit System (CBCS) & OBI IESTER – I/II	E Scheme]	
Course Code:	P21AEC109B / 209B	Credits:	01
Teaching Hours/Week (L:T:P):	0:2:0	CIE Marks	: 50
Total Number of Teaching Hours:	15	SEE Marks	s: 50
Course Learning Objectives (CLOs):			
1. To identify the major challenges in en solutions.	vironmental issues and eva	aluate possible	2
2. Develop analytical skills, critical think	king and demonstrate socio	o-economic sk	ills for
sustainable development.			
3. To analyze an overall impact of specific plan.	fic issues and develop envi	ronmental ma	nagement
Course			
UNIT	$\Gamma - \mathbf{I}$		5 Hours
of Ecosystem, Balanced ecosystem Hu Social Security. Definition, Scope and basic principles Ecology and Ecosystem – Structural an webs. Ecological pyramids; Energy flow	of ecology and environm d Functional Components	nent, Fundame	entals of
UNIT	- II		5 Hours
Air Pollution & Automobile Pollution: D & Ozone layer depletion, controlling me		Warming, Ad	cid rain
Solid Waste Management, E - Waste M Sources, Characteristics & Disposal met	•	al Waste Mar	agement -
UNIT	– III		5 Hours
Natural Resources, Water resources – diseases & water induced diseases, I resources, Forest Wealth, Material Cyc. Cycle.	Fluoride problem in drin	nking water,	Mineral
Energy – Different types of energy, Cor energy: solar energy, Hydro electric er Biogas Fossil Fuels, Hydrogen as an alte	nergy, Wind Energy, Nuc		
energy: solar energy, Hydro electric er Biogas Fossil Fuels, Hydrogen as an alte	nergy, Wind Energy, Nuc		

- 3. Demonstrate ecology knowledge of a complex relationship between biotic and abiotic components
- 4. Apply their ecological knowledge to illustrate and graph a problem and describe the realities that managers face when dealing with complex issues

Books and References:

Text Books

- 1. Fundamentals of Ecology (3rd Ed.) 2001- MC Dash, Tata McGraw Hill, New Delhi.
- 2. Introduction to Environmental Engg. (1991). GM Masters, Prentice Hall of India.
- 3. Benny Joseph (2005), **"Environmental Studies"**, Tata McGraw Hill Publishing Company Limited.
- 4. R.J.Ranjit Daniels and Jagadish Krishnaswamy, (2009), **"Environmental Studies"**, Wiley India Private Ltd., New Delhi.
- 5. R Rajagopalan, **"Environmental Studies From Crisis to Cure"**, Oxford University Press, 2005,
- Aloka Debi, "Environmental Science and Engineering", Universities Press (India) Pvt. Ltd. 2012

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The student has to obtain a minimum of 40% of maximum marks in both CIE and SEE.

Continuous Internal Evaluation:

- TWO Unit Tests each of 40 Marks (duration 01 hours) (All tests are similar to the SEE pattern i.e. question paper pattern is MCQ)
- Two assignments each of 10 Marks.
- At the end of the Semester, Two Unit Tests and assignments average marks will be considered as CIE i.e. for 50 Marks.

Semester End Exam (SEE):

SEE is conducted for 50 marks (1-hour duration). SEE paper will be set for 25 questions of each of 02 marks. The pattern of the question paper is MCQ. The time allotted for SEE is 01 hour.

Employability Enhancement Skills (EES) - I [As per Choice Based Credit System (CBCS) & OBE Scheme] SEMESTER - I

Course Code:	P21HSMC108	Credits:	01
Teaching Hours/Week (L:T:P):	0:2:0	CIE Marks:	50
Total Number of Teaching Hours:	28	SEE Marks:	50

Course Learning Objectives: This course will enable students to:

- Get introduced to some of the concepts of soft skills and enhance communication skills
- Recognize common mistakes done by an individual in the course of his / her communication
- Write effective emails
- Identify their strengths, weakness, opportunities and threats
- Understand the basic rules of sentence structures
- Understand the correct usage of parts of speech, tenses and articles

UNIT – I

- Explain divisibility roles, properties of various types of numbers
- Explain application of percentage in our daily life
- Describe the concepts of profit, loss, discounts
- Explain concepts behind logical reasoning modules of arrangements and blood relations

	10	Hours
--	----	-------

Soft Skills: LSRW, Listening, communication skills (verbal and non-verbal skills), public speaking, Email writing, SWOT Analysis

Self-Study: Motivation and Time Management

UNIT – II	10 Hours
Verbal Ability: Parts of Speech - Prepositions, Adjectives and Adverbs ; Tenses Idioms and Phrasal verbs, Subject verb agreement, Synonyms and Antonyms	s, Articles,
Self-Study: Para jumbles and one word substitution	
UNIT – III	8 Hours
Quantitative Aptitude: Number system, Percentage, Profit & Loss	
Logical Reasoning: Blood Relations and Arrangements	

Course Outcomes: On completion of this course, students are able to:

CO – 1: Exhibit amplified level of confidence to express themselves in English

- **CO** 2: Understand the correct usage of tenses and articles
- CO 3: Increase the number of words in his/her day to day
- **CO 4:** Solve logical reasoning problems based on blood relations and arrangements

CO - 5: Solve the problems based on number system, percentage and profit & loss

Text Book(s):

1. Word Power Made Easy New Revised and Expanded Edition, First Edition, Norman Lewis, Goyal Publisher.

2. Essential English Grammar by Raymond Murphy, Cambridge University Press, new edition

- 3. The 7 habits of Highly Effective People by Stephen R. Covey
- 4. Quantitative aptitude by Dr. R. S Agarwal, published by S.Chand private limited.
- 5. Verbal reasoning by Dr. R. S Agarwal, published by S. Chand private limited.

Reference Book(s):

1. Quantitative Aptitude by Arun Sharma, McGraw Hill Education Pvt Ltd

2. CAT Mathematics by Abhijith Guha, PHI learning private limited.

Web and Video link(s):

1. Improve Your English Communication Skills Specialization https://www.coursera.org/specializations/improve-english

	COURSE ARTICULATION MATRIX [Employability Enhancement Skills (EES) - I]												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO-1	-	-	-	-	-	-	-	-	2	3	-	2	
CO-2	-	-	-	-	-	-	-	-	-	2	-	2	
CO-3	-	-	-	-	-	-	-	-	-	2	-	2	
CO-4	2	-	-	-	-	-	-	-	-	-	-	-	
CO-5	2	-	-	-	-	-	-	-	-	-	-	-	

ENGINEERING MATHEMATICS-II

[As per Choice Based Credit System (CBCS) & OBE Scheme]

SEMESTER - II

Course Code:	P21MA201	Credits:	04
Teaching Hours/Week (L:T:P):	3:2:0	CIE Marks:	50
Total Number of Teaching Hours:	50	SEE Marks:	50
Course Learning Objectives:			

To enable students to apply the knowledge of Mathematics in various engineering fields by making them to learn the following:

- Linear Algebra to find analytical solution of system of linear equation.
- Solution of homogeneous and non-homogeneous Linear differential equations
- Laplace transform of various function and solutions of IVP.
- Applications of Partial Differentiation.
- Vector Integration, and OCC.
- Double, triple integration and Beta-Gama functions.

UNIT – I	10 Hours

Linear Algebra: Introduction - Rank of matrix by elementary row operations - Echelon form of a matrix. Consistency of system of linear equations: Gauss elimination method, Gauss-Jordan method and L-U decomposition method. Eigen values and Eigen vectors of square matrices. Similarity of matrices and diagonlisation of matrices (For 2×2 real matrices only). Quadratic forms: Reduction to canonical form by orthogonal transformation.

Self-study component- Review of elementary properties of matrices.

UNIT – II	10 Hours								
Linear differential equations of higher order: Linear differential equations of second and higher									
order with constant coefficients. Homogeneous / non-homogeneous equation	s. Inverse differential								
operators. $f(D) y = R(x)$ Where $R(x) = e^{ax}$, $\sin ax / \cos ax$ and p	olynomial in x								
and $e^{ax} \sin ax / \cos ax$. $e^{ax} \sin ax / \cos ax$. Solution of initial value problems, method of variation									
of parameters. Solution of Cauchy's and Legendre's linear differential equations.									

Self-study component-Review of linear differential equation f(D)y = R(x) where $(x) = e^{ax}V(x)$

10 Hours

Laplace Transforms: Definition – Transforms of elementary functions. Properties of Laplace transforms, Transforms of periodic function, unit step function (All results without proof)-Problems only.

Inverse Laplace transforms: Definition – Evaluation of inverse transforms by standard methods. Convolution theorem - Problems only. Solutions of second order linear differential equations using Laplace transforms method. **Self-study component**-Problems on unit impulse function. Solution of Simultaneous ODE by Laplace method.

Applications of Partial Differentiatial Calculus: Jacobians, Taylor's Theorem for a function of two variables (without proof). Maxima and Minima for a function of two variables. Illustrative examples with applications. Lagrange's' method of undetermined multipliers with one subsidiary condition.

Vector integration- Integration of vector functions. Line integrals, surface and volume integrals. Green's, Stoke's and Gauss's divergence theorem/s (without proof)-Illustrated examples. Orthogonal curvilinear coordinates (OCC).

Self study component-Errors and approximations Expressions for grad ϕ , div \vec{A} , curl \vec{A} and Laplacian of ϕ in OCC.

11 Hours

Integral Calculus-I: Double and triple integrals-region of integration. Evaluation of double integrals by change of order of integration. Application of multiple integrals: Change of variables and applications to area and volume. Beta and Gamma functions – Definition. Relationship between Beta and Gamma function (No derivation)-Simple problems only.

Self study component - Computation of mass, centre of gravity, centre of pressure and moment of inertia, by using multiple integrals.

Course Outcomes: On completion of this course, students are able to:

 $\mathbf{UNIT} - \mathbf{V}$

- **CO-1**: Explain linear system of equations, Eigen values/vectors similarity and diagonalisation of matrices.
- **CO-2**: Solve linear second order differential equations. Evaluate Laplace transforms and inverse Laplace transforms.

CO-3: Evaluate the Jacobians, and the Taylors series expansion and find the extreme value.

CO-4: Analyse the vector integration to use in the study of line integrals.

CO-5: Evaluate the multiple integrals and Evaluate application oriented problems.

Text Book(s):

- 1. B. S. Grewal, **Higher Engineering Mathematics**, 43rd Edition, Khanna Publishers, New Delhi, 2015.
- 2. N. P. Bali and Manish Goyal, **Engineering Mathematics**, Lakshmi Publications, 7th Edition, 2007.

Reference Book(s):

- 1. E. Kreyszig, Advanced Engineering Mathematics, John Wiley and Sons, 9th Edition, 2011.
- 2. G. B. Thomas and R. L. Finney, **Calculus and Analytical geometry**, 9th Edition, Pearson reprint, 2002.
- 3. J. Stewart, Calculus-Early Transcendentals, 7th Edition, Cengage, 2017.

Web and Video link(s):

- 1. <u>https://nptel.ac.in/courses/111/106/111106051/</u>, <u>https://nptel.ac.in/courses/111/108/111108098/</u>,
- https://nptel.ac.in/courses/111/106/111106100/, https://nptel.ac.in/courses/111/107/111107111/, https://nptel.ac.in/courses/111/108/111108081/, https://nptel.ac.in/courses/111/104/111104031/, https://nptel.ac.in/courses/122/107/122107037/
- 3. <u>https://nptel.ac.in/courses/111/106/111106139/</u>, <u>https://nptel.ac.in/courses/111/105/111105123/</u>
- 4. <u>https://nptel.ac.in/courses/111/107/111107108/</u>
- 5. https://nptel.ac.in/courses/111/105/111105122/, https://nptel.ac.in/noc/courses/noc20/SEM1/noc20ma07/
- 6. <u>https://nptel.ac.in/courses/111/104/111104125/</u>

COURSE ARTICULATION MATRIX [Engineering Mathematics-II P21MA201]														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO-1	3	2												
CO-2	3	2												
CO-3	3	2												
CO-4	3	1												
CO-5	2	3												

	cement Skills (EES)							
[As per Choice Based Credit]		E Scheme]						
	STER – II P21HSMC208	-	T					
Course Code:	Credits:	01						
Teaching Hours/Week (L:T:P):	CIE Marks:	50						
Total Number of Teaching Hours:	SEE Marks:	50						
Course Learning Objectives: This course w	vill enable students to:							
• Get introduced to the concepts of team	nwork and leadership							
• Understand the importance of profess	ional etiquettes							
• Describe the reading with comprehense	sion							
• Explain the purpose, plan and ways to	o identify specific deta	ils in a paragrap	h for					
better comprehension								
Form grammatically correct sentences								
• Explain the basic concepts in calculat	0 1	1						
• Explain concepts behind logical reaso	-	ction sense, codi	ng &					
decoding, series and visual reasoning UNIT – I		1	0 Hour					
$\mathbf{UN11} = \mathbf{I}$								
Soft Skills: Etiquette, Presentation Skills, Int	roduction to Body La	nguage, Interpers	sonal					
and Intrapersonal Skills, Team work, Leaders	· · ·	;						
1								
Self-Study: Concepts of Sympathy and Empa	athy							
1	-	1	0 Hour					
Self-Study: Concepts of Sympathy and Empa			0 Hour					
Self-Study: Concepts of Sympathy and Empa UNIT – II Verbal Ability: Verbal Analogies, Sentence			0 Hour					
Self-Study: Concepts of Sympathy and Empa UNIT – II Verbal Ability: Verbal Analogies, Sentence comprehension			0 Hour					
Self-Study: Concepts of Sympathy and Empa UNIT – II Verbal Ability: Verbal Analogies, Sentence comprehension Self-Study: Paragraph sequencing	I completion & correction	on, Reading						
Self-Study: Concepts of Sympathy and Empa UNIT – II Verbal Ability: Verbal Analogies, Sentence comprehension	I completion & correction	on, Reading						
Self-Study: Concepts of Sympathy and Empa UNIT – II Verbal Ability: Verbal Analogies, Sentence comprehension Self-Study: Paragraph sequencing UNIT – II Quantitative Aptitude: Simple & Compoun	I completion & correct I I d Interest, Ratio & Pr	on, Reading	8 Hours & Work					
Self-Study: Concepts of Sympathy and Empa UNIT – II Verbal Ability: Verbal Analogies, Sentence comprehension Self-Study: Paragraph sequencing UNIT – II	I completion & correct I I d Interest, Ratio & Pr	on, Reading	8 Hours & Work					
Self-Study: Concepts of Sympathy and Empa UNIT – II Verbal Ability: Verbal Analogies, Sentence comprehension Self-Study: Paragraph sequencing UNIT – II Quantitative Aptitude: Simple & Compoun	I completion & correcti I d Interest, Ratio & Pr g and Decoding, Serie	on, Reading	8 Hours & Work ing					

Course Outcomes: On completion of this course, students are able to:

- **CO 1:** Exhibit amplified level of confidence to express themselves in English
- **CO 2:** Critical awareness of the importance of teamwork and development of the skills for building effective teams
- **CO** 3: Solve the questions under reading comprehension confidently with higher accuracy
- **CO 4:** Solve the problems based on interest, ratio & proportion, time & work
- **CO 5:** Solve logical reasoning problems based on direction sense, coding & decoding and series

Text Book(s):

1. Word Power Made Easy New Revised and Expanded Edition, First Edition, Norman Lewis, Goyal Publisher.

2. Essential English Grammar by Raymond Murphy, Cambridge University Press, new edition

3. The 7 habits of Highly Effective People by Stephen R. Covey

- 4. Quantitative aptitude by Dr. R. S Agarwal, published by S.Chand private limited.
- 5. Verbal reasoning by Dr. R. S Agarwal, published by S. Chand private limited.

Reference Book(s):

1. Quantitative Aptitude by Arun Sharma, McGraw Hill Education Pvt Ltd

2. CAT Mathematics by Abhijith Guha, PHI learning private limited.

Web and Video link(s):

1. Teamwork Skills: Communicating Effectively in Groups https://www.coursera.org/learn/teamwork-skills-effective-communication

COURSE ARTICULATION MATRIX [Employability Enhancement Skills (EES) - II]													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO-1	-	-	-	-	-	-	-	-	2	3	-	2	
CO-2	-	-	-	-	-	-	-	-	3	1	2	2	
CO-3	-	-	-	-	-	-	-	-	-	2	-	1	
CO-4	2	-	-	-	-	-	-	-	-	-	-	-	
CO-5	2	-	-	-	-	-	-	-	-	-	-	-	